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Generating an arbitrary random variable is dependent upon first being able to simulate a random
variable uniformly on the interval [0, 1]. This is accomplished by a pseudorandom number generator
which we discuss now.

1.1 Pseudorandom Number Generators

Most “random numbers” generated on a computer are (somewhat surprisingly) derived from a
deterministic sequence of numbers. The function which is used to produce this sequence of non-
random numbers is referred to as a pseudorandom number generator. There are several ways to
construct a pseudorandom number generator which we discuss below but all such generators
have the same goal. They attempt to produce a sequence of numbers u1, u2, u3..., which mimic a
sequence of Uniform[0, 1] random numbers that are independent of one another.

One example of a pseudorandom number generator is the linear congruential generator. In a linear
congruential generator, the sequence u1, u2, u3..., is generated by setting

xi+1 = (axi + c) mod m,
ui+1 = xi+1/m,

for i = 0, 1, 2, .... The initial value x0 is referred to as the seed value and it is chosen by the user to
be an integer between 0 and m− 1. The value a is referred to as the multiplier, c is the increment
and m is the modulus of the generator. All of these numbers are assumed to be integers. The mod
operator takes the remainder after long division. For example 7 mod 2 = 1 and 9 mod 3 = 0.
This implies that xi+1 = (c + axi) mod m will always be an integer between 0 and m− 1, and so
ui+1 = xi+1/m will always be a number between between 0 and 1 as desired.

Linear congruential generators are one of the oldest known pseudorandom number generators.
They are also one of the best known and widely used pseudorandom number generators. This is
because they are relatively easy to understand and may be efficiently implemented on a computer.
If c = 0 in the above, then we may refer to the generator more specifically as a multiplicative
congruential generator and if c 6= 0 we may refer to it as a mixed congruential generator.
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In order to better understand how linear congruential generators work, let us set the multiplier
a to 7, the increment c to 0 and the modulus m to 11. Starting with an initial seed value of 4, the
sequence of pseudorandom numbers generated is given by

x0 = 4
x1 = 28 mod 11 = 6
x2 = 42 mod 11 = 9
x3 = 63 mod 11 = 8
x4 = 56 mod 11 = 1
x5 = 7 mod 11 = 7
x6 = 49 mod 11 = 5
x7 = 35 mod 11 = 2
x8 = 14 mod 11 = 3
x9 = 21 mod 11 = 10

x10 = 70 mod 11 = 4
x11 = 28 mod 11 = 6

... =
... =

...

Notice that in the original example above since the modulus m has been set to 11, the xi’s can
only take on the integer values 1 through 10 (we rule out 0 in this case because since c = 0 we
have that if xi = 0, then xj = 0 for all j > i). Moreover, all 10 of these values appear before the
sequence returns to its initial seed value of 4. This occurs at x10 at which the point the sequence
starts to repeat itself. In this case, we say that the linear congruential generator has a full period.
Not all generators have a full period. For instance, consider the case in which the multiplier a is
4, the increment c is 0 and the modulus m is 11. Then, the seed value of 1 generates the sequence
1, 4, 5, 9, 3, 1, 4, ...., whereas the seed value of 2 generates the sequence 2, 8, 10, 7, 6, 2, 8, .....

The longer the period of a generator, the more distinct numbers it will produce before repeating
itself. This is desirable because it implies that that the generator can more closely mimic a uni-
form distribution. In fact, if the modulus m is a prime number and the increment c is 0, then the
following two conditions on the multiplier a ensure that the generator has a full period.

1. am−1 − 1 is a multiple of m.

2. aj is not a multiple of m for j = 1, ..., m− 2.

The following table taken from L’Ecuyer (1998) provides the multipliers and moduli for some
commonly recommended multiplicative congruential generators. All of these generators have
full periods.

Multiplier Modulus

39373 231 − 1
16807 231 − 1
40692 2147483399
40014 2147483563
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Multiplier Modulus

42024 2147482801

One common feature of all linear congruential generators is that all pairs of consecutive ui’s will
lie on a common set of parallel lines in the unit square. This is referred to as the lattice structure
of linear congruential generators and it may or may not be a problem depending on how far apart
or close together the parallel lines are spaced. The spectral test for linear congruential generators
was developed by Coveyou and Macpherson (1967) in order to address this issue and measures
how strong the lattice effect is. It works by taking the maximum value of the distance between
all sets of parallel lines that the consecutive pairs (ui, ui+1) lie on. Smaller resulting values imply
more random appearing patterns. The spectral test can also be extended to higher dimensions.

2 Session 2: Probability Overview

Summer 2019 - Instructor: Josh Reed

Teaching Assistant: Haotian Song

In this session we provide an overview of the fundamental ideas of probability. These notes are a
summary of Chapter 1 of Ross’ Introduction to Probability Models.

3 Samples Spaces

One of the main motivations for studying probability is the desire to assign weights or probabilities
to events which might occur in the future. To this end, a key concept which underlies all of
probability (although it is not always up front and visible) is the concept of a sample space, which
is usually denoted by S . The sample space is the set of all possible outcomes which might occur.
Subsets of the sample space are referred to as events, which are usually denoted by E.

Example. Suppose that a coin will be tossed and will land either on heads or on tails. Then, the
sample space is S = {H, T} which are the two possible outcomes of tossing the coin. There are
three events which may be formed. They are {H}, {T} and {H, T}. The first 2 of these events
represent the coin landing on heads and the coin landing on tails, respectively. The third event
represents the coin landing on either heads or tails.

Example. Suppose that a 6-sided will be rolled. The sample space of possible outcomes is S =
{1, 2, 3, 4, 5, 6}. There are many events which may be formed in this case. For instance {1} is the
event that the number 1 is rolled. On the other hand, {2, 4, 6} is the event that an even number is
rolled and {4, 5, 6} is the event that a number 4 or larger is rolled.

Example. Suppose that a coin will be tossed two times in a row and that each time the coin
will land either on heads or on tails. Then, the sample space of possible outcomes is S =
{HH, HT, TH, TT} representing the possible outcomes of tossing the coin twice. There are several
events which may be formed. For instanace, {HT, TH} represents one heads and one tails being
tossed, while {HH, TT} represents either both heads or both tails.
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We can also create combinations of events through the union and intersection of events. In partic-
ular, A ∪ B is the union of events A and B and represents the set of all outcomes that are either in
event A or event B or both. Next, A ∩ B is the intersection of events A and B and represents the set
of all outcomes that are both in event A and event B. Finally, AC is the complement of event A and
is the set of all outcomes that are not in event A.

Example. Suppose that again a coin will be tossed and will land either on heads or on tails.
Then, the events {H} and {T} represent the coin landing on heads or tails, respectively. The
union of these two events {H} ∪ {T} = {H, T} is a coin landing on either heads or tails. The
intersection {H} ∩ {T} = ∅ is the emptyset which is also paradoxically considered to be an event.
The complement ({H}C = {T}).

Example. Suppose that a 6-sided will be rolled. In this case, {2} ∪ {4} ∪ {6}∪ = {2, 4, 6} is the
event that an even number is rolled, and {2, 4, 6}C = {1, 2, 3} is the event that an odd number is
rolled. Also, {1, 2, 3, 4} ∩ {3, 4, 5, 6} = {3, 4} is the event that a number greater than 2 but less 5 is
rolled.

Example. Suppose that a coin will be tossed two times in a row and that each time the coin will
land either on heads or on tails. Then, {HH} ∪ {HT} ∪ {TH}∪ = {HH, HT, TH} is the event
that the coin lands on heads at least once, and {HH, HT, TH}C = {TT} is the event that the coin
never lands on heads. Also, {HH, HT, TH} ∩ {HT, TH, TT} = {HT, TH} is the event that the
coin lands on heads at least once and tails at least once.

4 Assigning Probabilities to Events

One of the advantages of speaking in terms of sample spaces and events is that we can assign
probabilities to each event E, denote by P(E). There are 3 rules for assigning probabilities to
events.

1. Every event has a probability between 0 and 1. That is, 0 ≤ P(E) ≤ 1 for every event.

2. The probability that some event occurs is 1. That is, P(S) = 1.

3. If E1, E2, E3, ..., are disjoint events, then

P

(
∞⋃

i=1

Ei

)
=

∞

∑
i=1

P(Ei).

In the above, 2 events A and B are said to be disjoint if A ∩ B = ∅.\

Example. Consider the example above of tossing a coin and seeing if it lands on heads or tails. If
the coin is fair then P(H) = P(T) = 1. On the other hand, if the coin is not fair then we may that
P(H) = 4/5. In this case, since P(S) = 1, it must be the cas that P(T) = 1− P(H) = 1/5.

Example. Consider the example above of rolling a die. Suppose we wish to calculate the proba-
bility that the die lands on 2,3,4,5 or 6. In order to this we can use the fact that for an event E we
have that P(E) = 1− P(EC). Hence, P(2, 3, 4, 5, 6) = 1− P(1) = 5/6.

Example. Consider the example above of rolling a die. Suppose we wish to calculate the proba-
bility that the die lands on 2,3,4,5 or 6. In order to this we can use the fact that for an event E we
have that P(E) = 1− P(EC). Hence, P(2, 3, 4, 5, 6) = 1− P(1) = 5/6.\
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Example. Consider the example above of flipping a coin two times in a row. Suppose we wish to
calculate the probability that at least 1 of the 2 coins lands on heads. In this case let the event E be
defined by E = {(H, H), (H, T)} and let the event F be defined by F = {(H, H), (T, H)}. In words
E is the event that the first toss of the coin lands on heads and F is the event that the second toss
of the coin lands on heads. We want to calculate the probability of E ∪ F. In order to do this we
can make use of the relationship

P(E ∪ F) = P(E) + P(F)− P(E ∩ F).

In particular both E and F have a 1/2 probability since the probability of either of the coins land-
ing on heads is 1/2. Next, E ∩ F = {(H, H)} which has a 1/4 probability of occurring. Hence,
substituting into the above we obtain that P(E ∪ F) = 3/4.

5 Conditional Probabilities

Consider the die rolling example above and suppose that we are told that an even number has
been rolled. Now we wish to determine the probability that a 2 was rolled. How may we proceed?
Since an even number was rolled this limits the outcomes of the roll of the die to to the set {2, 4, 6}.
Moreover, since originally the die was equally likely to land on 1 through 6, given that we now
know either a 2,4 or 6 was rolled each of these must be equally likely to have occurred too. Hence,
the probability that a 2 was rolled given an even number was rolled is 1/3.

The above example illustrates what is known as a conditional probability. In this case we are
calculating the probability that a 2 is rolled conditional on an even number number being rolled.
If we let F = {2, 4, 6} be the event that an even number is rolled and E = {2} be the event that a 2
is rolled, then the conditional probability is denoted by P(E|F). There exists a general formula for
calculating conditonal probability and it is given by

P(E|F) = P(E ∩ F)
P(F)

.

Example. Suppose that cards numbered 1 through 20 are randomly shuffled and the top card is
then flipped over. Given that the number of the card is at least an 8, what is probability that it is a
12? In order to answer this question, we can use conditional probabilities. Let F denote the event
that the top card is at least an 8 and let E denote the event that the top card is a 12. Then, E ∩ F
is the event that at least an 8 is drawn and that a 12 is drawn, which is equivalent to a 12 being
drawn. Hence, using the conditional probability formula the desired probability is

P(E|F) = P(E ∩ F)
P(F)

=
1

20
13
20

=
13
20

.

Example. Consider a family that has 2 children and that at least one of them is a girl. What is
the probability that both children are girls? In order to answer this question, we can again use
conditional probabilities. Let F denote the event that at least one of the children is a girl and let
E denote the event that both children are girls. Then, E ∩ F is the event that both children are
girls. Assuming that boys and girls are equally likely to be born, this event has probability 1/4.
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Enumerating the possible outcomes, the probability that at least one child is a girl is 3/4. Using
the conditional probability formula, the desired probability is given by

P(E|F) = P(E ∩ F)
P(F)

=
1
4
3
4

=
1
3

.

Example. John is deciding to whether to take a course in either machine learning or data mining.
If John takes a machine learning course, he will receive an A with probability 1/3. If John takes a
data mining course, he will receive an A with probability 1/2. In order to decide which course to
take, John has decided to flip a fair coin. What is the probability that in the end John receives an
A in machine learning? In order to answer this question, we can use the conditional probability
formula. Let E be the event that John receives an A, regardless of the course he takes, and let F be
the event that John takes the machine learning course. Then, E ∩ F is the event that John receives
an A in the machine learning course, and rearranging the conditional probability formula we have

P(E ∩ F) = P(F)P(E|F) = 1
2
× 1

3
=

1
6

.

6 Independent Events

Independence is a concept which will be important in this course. Two events are said to be
independent of one another if

P(E ∩ F) = P(E)P(F).

Note that E and F are independent of each other. Meaning that if E is independent of F, then F is
also independent of E. Using the conditional probability formula, we also have that if E and F are
independent, then

P(E|F) = P(E).

Example. Suppose that a fair coin is tossed 2 times in a row. What is the probability that it lands
on heads each time? To answer this question let E1 be the probability that it lands on heads on the
first toss, and let E2 be the probability that it lands on heads on the second toss. Then, since the 2
tosses are independent of each other, we have that

P(E1 ∩ E2) = P(E1)P(E2) =
1
2
× 1

2
=

1
4

.

Example. Suppose that a 6 sided die is rolled two times in a row. Is the event that the first die rolls
a 4 independent of the event that the sum of the two rolls is a 7? The answer to this question is not
obvious so we will resort to calculating the relevant probabilities and seeing if the condition for
independence holds. Let E1 be the event that the first roll of the die is a 4 and let E2 be the event
that the sum of the two dice is 7. Now note that in order for E1 ∩ E2 to occur the first roll must be
a 4 and the second roll a 3. Since there are a total of 6× 6 = 36 possible ordered outcomes of the
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two dice rolls, we have that P(E1 ∩ E2) = 1/36. On the other hand, since the die has six sides it
follows that

P(E1)× P(E2) =
1
6
× 1

6
= 1/36

and so the two events are independent.

The events E, F and G are said to be independent if E and F are independent, F and G are inde-
pendent, G and E are independent, and

P(E ∩ F ∩ G) = P(E)P(F)P(G).

In other words, if all subsets of events are independent of one another. A similar definition holds
for 4 or more events.

Example. Suppose that an urn contains 4 balls labeled 1,2,3 and 4 and that each of the balls is
equally likely to be drawn from the urn. Let the events E = {1, 2}, F = {1, 3} and G = {1, 4}
where the numbers denote the ball drawn from the urn. In this case one can verify that

P(E ∩ F) = P(E ∩ F) =
1
4

,

P(F ∩ G) = P(F ∩ G) =
1
4

,

P(E ∩ G) = P(E ∩ G) =
1
4

.

This implies that E, F and G are pairwise independent. However,

1
4
= P(E ∩ F ∩ G) 6= P(E)(F)(G) =

1
8

,

and so the events E, F and G are not independent.

7 Bayes’ Formula

Sometimes when calculating a conditional probability P(E|F), it is easier to calculate the opposite
conditional probability P(F|E). Luckily, it turns out that P(E|F) and P(F|E) may be related to one
another via

P(E|F) = P(F|E)P(E)
P(F)

.

This relationship is referred to as Baye’s law.

Example. Suppose that we have two urns. The first urn contains 3 white balls and 4 black balls.
The second urn contains 5 white balls and 6 black balls. Suppose that we flip a fair coin and then
take a ball from the first or second urn if the coin lands on heads or tails, respectively. What is
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the probability that the coin landed on heads given that a white ball was picked? To answer this
question we can use Baye’s rule. Let H be the event that the coin lands on heads and let W be the
event that a while ball was selected. Then,

P(H|W) =
P(W|H)P(H)

P(W)
.

Now, P(W|H) = 3/7 and P(H) = 1/2. To calculate P(W) we use the fact that

P(W) = P(W|H)P(H) + P(W|HC)P(HC) =
34
77

,

from which it follows that P(H|W) = 33/68.

Example. A student is taking a multiple choice test and for each question she either knows the
correct answer with probability p or guesses with probability 1− p. Each question has m choices
and so a guess results in the correct answer with probability 1/m. Given that a student answered
a questions correctly, what is the probability that she guessed? Let C be the event that the student
answers a question correctly and G the probability that she guessed. Then, by Baye’s rule

P(G|C) = P(C|G)P(G)

P(C)
=

P(C|G)P(G)

P(C|G)P(G) + P(C|GC)P(GC)
.

Now P(C|G) = 1/m and P(C|GC) = 1. Also P(G) = 1− p and P(GC) = p. Substituting these
quantities into the above we obtain that

P(G|C) = 1− p
1 + (m− 1)p

.

Example. A test is 99% accurate in detecting if a person is sick. However, 1% of healthy people
also yield a positive result of being sick. If 0.5% of the population actually has the disease, what is
the probability that a person with a positive test is sick? We can use Baye’s rule as follows. Let D
be the event that a person is sick and E the event that their test is positive. Then,

P(D|E) = P(E|D)P(D)

P(E)
=

P(E|D)P(D)

P(E|D)P(D) + P(E|DC)P(DC)
.

Now substituting the appropriate probabilities into the above we obtain that P(D|E) is approxi-
mately 83.2%.

8 Random Variables

Often times we will assign a numeric value to each outcome in the sample space. For instance if
we flip a coin we might assign a 0 if it lands on tails and a 1 if it lands on heads. If we roll two
fair die in a row we might sum up the two numbers that are rolled. Any function which assigns a
numeric value to each outcome is the sample space is referred to as a random variable.
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Example. Suppose that two fair die are rolled in a row and let Z be the random variable that is
the sum of the two numbers that are rolled. We can then calculate the probability that Z takes
on a certain value by summing up the probabilities of the events associated with the value. For
instance,

P(Z = 2) = P((1, 1)) =
1
36

,

P(Z = 5) = P({(1, 4), (2, 3), (3, 2), (4, 1)}) =
1
9

,

and

P(Z = 8) = P({(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}) =
5

36
.

Note also that since Z must take on a value between 2 and 12, it follows that

12

∑
z=2

P(Z = z) = 1.

This can be verified by going through all of the calculations above from z = 2 through z = 12.

Example. Suppose that two fair coins are tossed in a row and let Z be the random variable that is
the number of heads that are tossed. Then, we have that

P(Z = 0) = P((T, T)) =
1
4

,

P(Z = 1) = P({(H, T), (T, H)}) =
1
2

,

and

P(Z = 2) = P((H, H)) =
1
4

.

Note that in this case P(Z = 0) + P(Z = 1) + P(Z = 2) = 1.

Example. Suppose that we are interested in whether a machine will break down within a year
from now and that we define the random variable I by

I =

{
0, if the machine is still working a year from now,
1, if the machine breaks down within a year from now.
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The random variables I is referred to as an indicator function for whether the machine breaks down
or not. This type of random variable will be useful in the course.

If Z is a random variable, then its cumulative distribution function F is defined by

F(z) = P(Z ≤ z), z ∈ R.

The cumulative distribution function encodes all of the information about the distribution of Z.
For instance, if one wants to know the probability that Z is greater than some number z, then this
is given by 1− F(z). If one wants to know the probability that Z lies between two numbers a and
b, then this is given by

P(a < Z ≤ b) = F(b)− F(a).

As we proceed throughout the course, the cumulative distribution function will show up many
times.

9 Discrete Random Variables

A random variable Z is said to be discrete if it can only take on a finite number of values or at most
as many values as there are integers (this is referred to as a countable number of values). In this
case, we can write down the values that Z can take as z1, z2, ... The probability mass function (or
pmf for short) of Z is a function p defined on z1, z2, ..., such that

p(zi) = P(Z = zi), i = 1, 2, ...

It must always be the case that

∞

∑
i=1

p(zi) = 1.

We can also express the CDF of a discrete random variable in terms of its pmf by writing

F(z) = ∑
i:zi≤z

p(zi), z ∈ R.

Example. Let Z be the random variable representing the outcome of rolling a 6 sided die. Then, Z
is a discrete random variable and the values it can take are 1,2,3,4,5 and 6. The pmf of Z is

p(i) = 1/6, i = 1, 2, 3, 4, 5, 6.

The CDF of Z is given by
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F(z) =



0, if z < 1,
1/6, if z < 2,
1/3, if z < 3,
1/2, if z < 4,
2/3, if z < 5,
5/6, if z < 6,
1, if z ≥ 6.

Example. Consider a random variable Z with probability mass function

p(1) = 1/3, p(2) = 5/12, p(3) = 1/4.

The CDF of Z is given by

F(z) =


0, if z < 1,
1/3, if z < 2,
3/4, if z < 3,
1, if z ≥ 3.

10 Continuous Random Variables

A random variable Z is said to be continuous if it can take on an infinite number of values that
cannot be counted with integers. For instance, a random variable taking all possible values in
the interval [0, 1] would be continuous or, more generally, a random variables taking all values in
(−∞, ∞) would be continuous. Because a continuous random variable can take so many values,
the probability of it taking any particular one is zero and so there is no probability mass function.
Instead, for a continuous random variable we have a probability density function (or pdf for short)
which is a function f such that if F is the CDF of Z, then we may write

F(z) =
∫ z

−∞
f (u)du, z ∈ R.

Another way to think of the pdf f is as the derivative of the CDF F. In other words,

f (z) =
dF(z)

dz
, z ∈ R.

Because Z must take on some value with probability 1, it will always be the case

∫ ∞

−∞
f (u)du = 1.

To find the probability that Z is greater than some number z, we have
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P(Z > z) = 1− F(z) =
∫ ∞

z
f (u)du = 1,

and the probability that Z lies between two numbers a and b is

P(a < Z < b) = F(b)− F(a) =
∫ b

a
f (u)du.

Example. One example of a continuous random variable is a random variable Z which is uni-
formly distributed over the interval [0, 1]. This random variable will be play a prominent role in
our lectures on simulation. The pdf of a Uniform[0, 1] random variable is given by

f (z) =

{
1, if 0 < z < 1,
0, otherwise.

This implies as expected that a Uniform[0, 1] random variable is equally likely to take any value
between 0 and 1. Suppose now that we would like to find the probability Z is less than 1/3 and
the probability that Z is between 1/4 and 3/4. Integrating the pdf, we find that the CDF of a
Uniform[0, 1] random variable is

F(z) =


0, if z < 0,
z, if 0 ≤ z < 1,
1, if z ≥ 1.

The probability that Z is less than 1/3 is now given by F(1/3) = 1/3 and the probability that Z
lies between 1/4 and 3/4 is given by F(3/4)− F(1/4) = 1/2. \

Example. Consider a random variable Z which takes values between 0 and 1 and whose pdf is
given by

f (z) =


4z, if 0 < z < 1/2,
4− 4z, if 1/2 ≤ z < 1,
0, otherwise.

This is an example of a symmetric triangular distribution (due to the fact that shape of the pdf is
a triangle) and it is also the distribution of the average of two independent Uniform[0, 1] random
variables. That is, if U1 and U2 are independent Uniform[0, 1] random variables, then Z has the
same distribution as (U1 +U2)/2. Suppose now as above that we would like to find the probability
Z is less than 1/3 and the probability that Z is between 1/4 and 3/4. Integrating the pdf, we find
that the CDF of Z is

F(z) =


0, if z < 0,
2z2, if 0 ≤ z < 1/2,
2z2 − (2z− 1)2, if 1/2 ≤ z < 1,
1, if z ≥ 1.
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The probability that Z is less than 1/3 is now given by F(1/3) = 2/9 and the probability that Z
lies between 1/4 and 3/4 is given by F(3/4)− F(1/4) = 3/4.

Example. Suppose that Z is a random variable with pdf

f (z) =

{
cz2, if − 3 < z < 3,
0, otherwise.

We now wish to find the value of c. In order to do this we can use the fact that

∫ 3

−3
f (z)dz = 1.

Hence, we obtain that

c =
(∫ 3

−3
z2dz

)−1

= 1/18.

11 Expectation of a Random Variable

The expectation of a discrete random variable Z with probability mass function p is given by

E[Z] =
∞

∑
i=1

zi p(zi),

where z1, z2, ..., are the set of values that the random variable Z can take. One can think of the
expecation as being the average value of Z.\

Example. Let Z be the random variable representing the outcome of rolling a 6 sided die. Then, all
6 values of the die are equally likely and the pmf of Z is given in the exercise above. The expected
value of Z is

E[Z] = 1
(

1
6

)
+ 2

(
1
6

)
+ 3

(
1
6

)
+ 4

(
1
6

)
+ 5

(
1
6

)
+ 6

(
1
6

)
=

7
2

.

Example. Consider a random variable Z with probability mass function

p(1) = 1/3, p(2) = 5/12, p(3) = 1/4.

The expected value of Z is

E[Z] = 1
(

1
3

)
+ 2

(
5

12

)
+ 3

(
1
4

)
=

23
12

.

Example. Let I by a random variable defined by

13



I =

{
0, if a machine is still working a year from now,
1, if a machine breaks down within a year from now.

Recall from the exercise above that I is referred to as an indicator function for whether the machine
breaks down or not. The expectation of I is given by

0× P(machine is still working a year from now)+ 1× P(machine breaks down within a year from now)

which is equal to P(machine breaks down within a year from now). Hence, from this example we
see that the expectation of an indicator function is equal to the probability of the event that it is
meant to indicate.\

The expectation of a continuous random variable is defined in a similar way to the expectation of
a discrete random variable. If Z is a continuous random variable with probability density function
f , then its expectation is given by

E[Z] =
∫ ∞

−∞
z f (z)dz.

Example. Consider a random variable Z which is uniformly distributed over the interval [0, 1].
Recall that the pdf of this random variable is given by

f (z) =

{
1, if 0 < z < 1,
0, otherwise.

The expectation of Z is then

E[Z] =
∫ ∞

−∞
z f (z)dz =

∫ 1

0
zdz =

z2

2

∣∣∣∣1
0
=

1
2

.

Example. Consider a random variable Z which takes values between 0 and 1 and whose pdf is
given by

f (z) =


4z, if 0 < z < 1/2,
4− 4z, if 1/2 ≤ z < 1,
0, otherwise.

This is an example of a symmetric triangular distribution. The expected value of Z is given by

E[Z] =
∫ ∞

−∞
z f (x)dz =

∫ 1/2

0
4zdz +

∫ 1

1/2
(4− 4z)dz =

1
2

.

It turns out that there is an easier way to find out that the expectation of Z is 1/2. If X1 and X2 are
two random variables, then the expectation of their sum is equal to the sum of their expectations.
In other words,

14



E[X1 + X2] = E[X1] + E[X2].

Also, if c is a constant and X is a random variable, then

E[cX] = cE[X].

From the exercise above, we know that Z is equal in distribution to (U1 +U2)/2 where U1 and U2
are Uniform[0, 1] random variables. Also, from the exercise above we have that E[U1] = E[U2] =
1/2. Therefore,

E[Z] = E[(U1 + U2)/2] =
1
2
(E[U1] + E[U2]) =

1
2

.

Example. Suppose that Z is a random variable with pdf

f (z) =

{
(1/18)z2, if − 3 < z < 3,
0, otherwise.

The expected value of Z is then given by

E[Z] =
∫ ∞

−∞
z f (x)dz =

∫ 3

−3
(1/18)z3dz = 0.

It should not be surprising that the expected value of Z is 0 because its pdf is symmetric about the
origin.

Many times in this course we will be interested in learning the expectation of a function of a
random variable. In, particular if g is a function and Z a random variable, we would like to
compute E[g(Z)]. If Z is a discrete random variable with pmf p, this can be accomplished by
setting

E[g(Z)] =
∞

∑
i=1

g(zi)p(zi).

Example. Let g(z) = z2 and let Z be the random variable representing the outcome of rolling a 6
sided die. Then, all 6 values of the die are equally likely and the pmf of Z is given in the exercise
above. The expected value of g(Z) is

E[g(Z)] = 12
(

1
6

)
+ 22

(
1
6

)
+ 32

(
1
6

)
+ 42

(
1
6

)
+ 52

(
1
6

)
+ 62

(
1
6

)
=

91
6

.

Example. Let g be the function defined by

g(1) = 4, g(2) = 2, g(3) = 9.

15



and consider a random variable Z with probability mass function

p(1) = 1/3, p(2) = 5/12, p(3) = 1/4.

The expected value of g(Z) is

E[g(Z)] = 4
(

1
3

)
+ 2

(
5
12

)
+ 9

(
1
4

)
=

53
12

.

If Z is a continuous random variable with pdf f , then E[g(Z)] is given by

E[g(Z)] =
∫ ∞

−∞
g(z) f (z)dz.

Example. Consider a random variable Z which is uniformly distributed over the interval [0, 1].
The pdf of this random variable is given by

f (z) =

{
1, if 0 < z < 1,
0, otherwise.

If g is a function, the expectation of g(Z) is

E[g(Z)] =
∫ ∞

−∞
g(z) f (z)dz =

∫ 1

0
g(z)dz.

Example. Consider a random variable Z which takes values between 0 and 1 and whose pdf is
given by

f (z) =


4z, if 0 < z < 1/2,
4− 4z, if 1/2 ≤ z < 1,
0, otherwise.

This is an example of a symmetric triangular distribution. Now suppose that g(z) = z2. The
expected value of g(Z) is then given by

E[g(Z)] =
∫ ∞

−∞
g(z) f (z)dz =

∫ 1/2

0
4z3dz +

∫ 1

1/2
z2(4− 4z)dz =

7
24

.

Example. Suppose that Z is a random variable with pdf

f (z) =

{
(1/18)z2, if − 3 < z < 3,
0, otherwise,

and let g(z) = 2− z. The expected value of g(Z) is then given by

16



E[g(Z)] =
∫ ∞

−∞
g(z) f (z)dz =

∫ 3

−3
2(1/18)z3dz−

∫ 3

−3
(1/18)z3dz = 2

∫ 3

−3
(1/18)z3dz = 2.

12 Variance of a Random Variable

If Z is a random variable, then its variance is defined by

Var(Z) = E[(Z− E[Z])2].

Another way to express variance which follows from this definition is

Var(Z) = E[Z2]− E2[Z].

Depending on the situation it may be easier to compute one or the other of these two expressions.
The importance of knowing the variance of a random variable is that it provides an indication of
how spread out the random variable is around its mean. Because the variance is expressed entirely
in terms of some function g of the random variable Z, we can use the results from the previous
section to calculate it.

Example. Let Z be the random variable representing the outcome of rolling a 6 sided die. Then,
from the examples above know that E[Z] = 7/2 and E[Z2] = 91/6. The variance of Z is therefore

Var(Z) = E[Z2]− E2[Z] =
91
6
−
(

7
2

)2

=
35
12

.

Example. Let Z be the random variable with probability mass function

p(1) = 1/3, p(2) = 5/12, p(3) = 1/4.

From the above exercise, we have that the expected value of Z is 23/12. Therefore, the variance of
Z is

Var(Z) = E[(Z− (23/12))2] =

(
11
12

)2 1
3
+

(
1
12

)2 5
12

+

(
13
12

)2 1
4
=

83
144

.

Example. Let I by a random variable defined by

I =

{
0, if a machine is still working a year from now,
1, if a machine breaks down within a year from now.

In this case, since 02 = 0 and 12 = 1, the variance of I is equal to

E[I]− E2[I] = E[I](1− E[I])

17



which, using the result above is equal to

P(machine breaks down within a year from now)× (1− P(machine breaks down within a year from now)).

Example. Consider a random variable Z which is uniformly distributed over the interval [0, 1].
The pdf of this random variable is given by

f (z) =

{
1, if 0 < z < 1,
0, otherwise.

We know from the above that the expected value of Z is 1/2. Hence, the variance of Z is

Var(Z) = E[(Z− (1/2))2] =
∫ 1

0
(z− (1/2))2dz =

1
12

.

Example. Consider a random variable Z which takes values between 0 and 1 and whose pdf is
given by

f (z) =


4z, if 0 < z < 1/2,
4− 4z, if 1/2 ≤ z < 1,
0, otherwise.

Using the examples above, we have that E[Z] = 1/2 and E[Z2] = 7/24. Hence,

Var(Z) = E[Z2]− E2[Z] =
7
24
−
(

1
2

)2

=
1
24

.

Example. Suppose that Z is a random variable with pdf

f (z) =

{
(1/18)z2, if − 3 < z < 3,
0, otherwise.

From the exercise above, we have that E[Z] = 0. Hence,

Var(Z) = E[Z2] =
1

18

∫ 3

−3
z4 =

27
5

.

13 Joint Distributions

So far we have discussed random variables in isolation. We now extend our results to the case
of two or more random variables, also known as a random vector. If X and Y are two random
variables, then their joint distribution function is given by

18



F(x, y) = P(X ≤ x, Y ≤ y), x, y ∈ R.

The joint distribution function encodes all of the information about the random vector (X, Y). For
instance, from the joint distribution function we can obtain the distribution function of X,

FX(x) = P(X ≤ x) = F(x, ∞), x ∈ R,

or the distribution function of Y,

FY(y) = P(Y ≤ y) = F(∞, y), y ∈ R.

These distribution functions are commonly referred to as the marginal distributions of the random
vector (X, Y).

In the specific case where X and Y are both discrete random variables, we can define their joint
probability mass function by

p(x, y) = P(X = x, Y = y), x, y ∈ R.

The probability mass function of X is then given by

pX(x) = ∑
y:p(x,y)>0

p(x, y), x ∈ R,

and the probability mass function of Y is given by

pY(y) = ∑
x:p(x,y)>0

p(x, y), y ∈ R.

If X and Y are continuous random variable, then they are said to be jointly continuous if there
exists a function f (x, y) such that we may write

P(X ≤ x, Y ≤ y) =
∫ y

−∞

∫ x

−∞
f (x, y)dxdy, x, y ∈ R.

The function f (x, y) is referred to as the joint probability density function of X and Y. The cumu-
lative distribution function of X is then given by

FX(x) =
∫ ∞

−∞

∫ x

−∞
f (x, y)dxdy, x ∈ R,

and the cumulative distribution function of Y is given by

FX(x) =
∫ y

−∞

∫ ∞

−∞
f (x, y)dxdy, y ∈ R.
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Also, the joint density function f may be recovered from the joint distribution function F via the
relationship

f (x, y) =
d2

dxdy
F(x, y), x, y ∈ R.

14 Independence

The random variables X and Y are said to be independent if

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y), x, y ∈ R.

This can be expressed in terms of the joint distribution function of X and Y by writing F(x, y) =
F(x)F(y). If X and Y are independent discrete random variable, then in terms of probability mass
functions, we have that

p(x, y) = pX(x)pY(y) x, y,∈ R,

whereas if X and Y are jointly continuous random variables, then in terms of probability density
functions, we have that

f (x, y) = fX(x) fY(y) x, y,∈ R.

One important fact regarding independent random variables is that if X and Y are independent,
then E[XY] = E[X]E[Y]. More generally, if g and h are functions, then

E[g(X)h(Y)] = E[g(X)]E[h(Y)].

Example. Suppose that X is uniformly distributed on [0, 1] and that Y is is a random variable with
a mean of 3. Also suppose that X and Y are independent of each other. Calculate E[XY]. In order
to calculate E[XY] we use the fact that the mean of a Uniform[0, 1] random variable is 1/2 together
with the fact that by independence, E[XY] = E[X]E[Y], in order to find that E[XY] = 3/2.

15 Covariance

If X and Y are random variables with joint distribution function F, then their covariance is defined
to be

Cov(X, Y) = E[(X− E[X])(Y− E[Y])].

From this definition, it may also be shown that

Cov(X, Y) = E[XY]− E[X]E[Y],
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which sometimes makes Cov(X, Y) easier to compute. If X and Y are independent, then
Cov(X, Y) = 0. Also, if X = Y, then Cov(X, Y) reduces to Var(X) or Var(Y).

Example. Suppose that X is the indicator function of the event A and that Y is the indicator
function of the event B. Recall that this means that

X =

{
0, if event A does not occur,
1, if event A does occur,

and

Y =

{
0, if event B does not occur,
1, if event B does occur.

Then, we may calculate that

Cov(X, Y) = P(X = 1, Y = 1)− P(X = 1)P(Y− 1).

In this case it may be shown that Cov(X, Y) > 0 if and only if

P(Y = 1|X = 1) > P(Y = 1).

In other words, the covariance between X and Y is positive if and only if Y is more likely to be 1
given that X equal to 1. More generally, if the two random variables X and Y have a positive co-
variance, then X tends to be large when Y is large, whereas if X and Y have a negative covariance,
then X tends to be small when Y is large.

Another measure of dependence between two random variables X and Y which will be used in
the course is their correlation, denoted by ρX,Y. The correlation between X and Y is defined by

ρX,Y =
Cov(X, Y)√

Var(X)Var(Y)

[ ]:

16 Session 3: Random Number Generation

Summer 2019 - Instructor: Josh Reed

Teaching Assistant: Haotian Song
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16.1 The Inverse Transform Method

Let X be a random variable with cumulative distribution function F. Recall that this means that
F(x) = P(X ≤ x) for each x ∈ R. The quantile function associated with F is defined by

F−1(u) = min{x ∈ R : u ≤ F(x)}, 0 < u < 1.

The inverse transform method of generating a random variable X with CDF F is the following.
First generate a Uniform[0, 1] random variable U, and then set

X = F−1(U).

To verify that X has the proper distribution, note that

P(X ≤ x) = P(F−1(U) ≤ x) = P(F(F−1(U)) ≤ F(x)) = P(U ≤ F(x)) = F(x).

The following is pseudocode for the inverse transform method.

1. Generate a random variable U which has a Uniform[0, 1] distribution.

2. Return X = F−1(U).

Example. Consider a random variable X which takes the value 0 with probability 1− p, and the
value 1 with probability p. This is referred to as the Bernoulli distribution and it is an example of a
discrete distribution. The CDF of X is given by

F(x) =


0 if x < 0,
1− p if 0 ≤ x < 1,
1 if x ≥ 1.

Its quantile function is therefore

F−1(u) =

{
0 if 0 < u ≤ 1− p,
1 if 1− p < u ≤ 1.

Hence, according to the inverse transform method, if we generate a Uniform[0, 1] random variable,
we then set X = 0 if 0 < U ≤ 1− p or X = 1 if 1− p < U ≤ 1.

Example. The Poisson distribution is a second example of a discrete distribution. It is commonly
used to count the number of events occuring over some interval of time. The Poisson distribution
is paramterized by its mean λ. Specifically, if N is a Poisson random variable with mean λ, then
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P(N = n) = e−λλn/n! for n = 0, 1, 2, .... This implies that the CDF of N is given by F(x) = 0 for
x < 0 and

F(x) =
bxc

∑
k=0

e−λ λk

k!
, x ≥ 0,

where bxc denotes the largest integer less than or equal to x. It is not possible to provide a simple
expression for the sum appearing above and so we cannot write the quantile function of F in a
nice way. Nevertheless, we can still apply the inverse transform method as follows. First, let
U be a uniform random variable on the interval [0, 1]. Then, set X = n where n is such that
F(n− 1) < U < F(n). There is no formula for finding the n satisfying the preceding condition but
one may iteratively search through n starting from n = 0 until the proper n is found.

Example. The geometric distribution is an example of a discrete distribution which represents the
number of repeated, independent trials until success. For example, consider the number of times
a coin must be flipped before it lands on heads. The probability of success on any given trial is
denoted by 0 ≤ p ≤ 1. If X is a geometric random variable with probability of success p, then the
probability of n trials until success is given by P(X = n) = (1− p)n−1 p for n = 1, 2, ... A geomet-
ric random variable may be simulated using the inverse transform method by first generating a
Uniform[0, 1] random variable U and then setting X = 1 + bln(U)/ ln(1− p)c.

Example. For a final example of the inverse transform method, consider the exponential distribu-
tion. This is an example of a continuous distribution. Like the Poisson distribution, the exponen-
tial distribution is parameterized by its mean, which is given by 1/λ. The parameter λ is referred
to as the rate of the distribution. The CDF of an exponential distribution with rate λ is given by

F(x) = 1− e−λx, x ≥ 0.

Inverting this CDF, one obtain its quantile function F−1(q) = − ln(1− u)/λ for 0 < u < 1. Note
also that if U is a Uniform[0, 1] random variable, then 1−U is a Uniform[0, 1] random variable
too. Hence, setting X = − ln(U)/λ one obtains a exponential random variable with mean 1/λ.

16.1.1 Conditional Distributions

Sometimes it is desirable to generate a random variable X conditioned on it taking values in some
interval [a, b]. The inverse transform method can be used in this situation. Suppose that X has
CDF F. Then, the CDF of F conditioned on X being in the interval [a, b] is given by

Fa,b(x) =
F(x)− F(a)
F(b)− F(a)

, a ≤ x ≤ b.

So, letting U be uniformly distributed between F(a) and F(b) and set X = F−1(U), one can verify
that X has the CDF given by Fa,b above.
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In-Class Exercise. Use the inverse transform method to generate a random variable X having the
cumulative distribution function

F(x) = 1− e−
√

x, x > 0.

Create a histrogram of this distribution function based off of 100,000 simulation replicatons.

Solution. This is an example of a Weibull distribution with scale parameter 1 and shape parameter
1/2. Inverting the cumulative distribution function F, we find that

F−1(q) = (ln(1− q))2, 0 < q < 1.

To use the inverse transform method to generate a random variable X having the cumulative
distribution function F we may therefore set X = (ln(U))2 where U is a Uniform[0, 1] random
variable. Here we have used the fact that 1−U has the same distribution at U.

17 The Acceptance-Rejection Method

The acceptance-rejection method for generating random variables first generates a random vari-
able according to some alternative distribution G and then decides whether to accept or reject the
sample. The distribution of the accepted samples turns out to have the desired distribution F.
The origin of this method dates back to the work of the mathematician John von Neumann. Its
specifics are as follows.

17.1 Continuous Distributions

A random variable X with a CDF F is said to be a continuous distribution if we may write

F(x) =
∫ x

−∞
f (u)du, x ∈ R.

In this case f is referred to as the probability density function of f (or pdf for short) and it is also the
derivative of F. Suppose now that we wish to generate a random variable X from a distribution
with CDF F and density f . To implement the acceptrance-rejection method we first pick an alter-
native continuous distribution which has CDF G and density g and also select a c > 0 such that
f (y) ≤ cg(y) for all y ∈ R. We then generate a random variable Y according to the distribution
G and set X = Y with probability f (y)/(cg(y)). This is the acceptance-rejection portion of the
algorithm. If X is not set equal to Y, we generate a new sample Y from the distribution G and
perform the acceptance-rejection test again. We continue on in this manner until eventually we
have accepted some Y and set X = Y.

The following is pseudocode for the continuous form of the acceptance-rejection method.

1. Generate a random variable Y according to the distribution G.

2. Generate a random variable U which has a Uniform[0, 1] distribution.

3. If U ≤ f (Y)/(cg(Y)), return Y. Otherwise, return to Step 1.
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The number of samples from the alternative distribution G that the acceptance-rejection method
must generate before an acceptance occurs is a geometric random variable with probability of suc-
cess 1/c. Hence, on average the algorithm will require c samples from the alternative distribution
G. This motivates one to choose an alternative distribution such that c may be set close to 1.

Example. Suppose that the positive random variable X has a pdf given by f (x) = xe−x for x ≥ 0.
In this case, the alternative pdf g can be chosen to be the exponential distribution with rate λ =
1/2. In other words, g(x) = (1/2)e−x/2. The constant c may be chosen to be 4/e which is about
1.472.

Example. Suppose that X is an arbitrary random variable which takes values in the unit interval
[0, 1] and which has a pdf f . In this case, one alternative distribution G which we may pick is the
Uniform[0, 1] distribution. Since the pdf g of a Uniform[0, 1] is constant and equal to 1, in order
to implement the acceptance-rejection method we must select a value of c which is less than f (x)
for all x ∈ [0, 1]. One option is to set c equal to the maximum of f over [0, 1]. The specifics of the
acceptance-rejection method are then as follows. Generate two Uniform[0, 1] random variables U1
and U2. If U_2 ≤ f (U_1)/c, return U1, otherwise repeat.

17.2 Discrete Distributions

There is also a version of the acceptance-rejection method for discrete random variables. Suppose
that X is a random variable following a discrete distribution. In other words, there exists a set of
xj for j = 1, 2, ..., such that P(X = xj) = pj and p1 + p2 + ... = 1. In this case, when performing
the acceptance-rejection method we find an alternative discrete random variable Y with some
distribution G such that P(Y = xj) = qj and q1 + q2 + ... = 1. Moreover, it must be the case that
there exists a c ≥ 0 satisfying pj/qj ≤ c for each j = 1, 2, .... We then proceed similar to the case
of the acceptance-rejection method for continuous distributions. The only difference is that rather
than work with probability density functions, we work with probability mass functions instead.

Pseudocode for the discrete form of the acceptance-rejection method is given below.

1. Generate a discrete random variable Y according to the distribution G. Call the value that this
random variable takes yj.

2. Generate a random variable U which has a Uniform[0, 1] distribution.

3. If U ≤ P(X = y_j)/(cP(Y = y_j)), return yj. Otherwise, return to Step 1.

Example. Suppose that X is a discrete random variable which takes the integer values 1 through
10 with the following probabilities.

xj 1 2 3 4 5 6 7 8 9 10

P(X=xj) 0.05 0.08 0.15 0.28 0.17 0.09 0.07 0.04 0.04 0.03

Next, suppose that Y is the unfiform distribution on the integers 1 through 10, meaning that P(Y =
i) = 1/10 for i = 1, ..., 10. In this case, the maximum value of pj/qj is given by 0.28/0.10 = 2.8
and so we may set c = 2.8.

Example. Suppose that X is a Poisson random variable with mean 2. In this case, P(X = j) =
e−22j/j! for j = 0, 1, 2, .... The first 7 values of this formula are as follows.
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j 0 1 2 3 4 5 6

P(X=j) 0.14 0.27 0.27 0.18 0.09 0.04 0.01

A natural candidate for the distribution of Y is the geometric distribution with a matching mean
of 2. This corresponds to a probability of success of p = 0.5. The first 7 values of the probability
mass function of Y are as follows.

j 0 1 2 3 4 5 6

P(Y=j) 0.50 0.25 0.125 0.06 0.035 0.02 0.01

A graph of the ratio P(X = j)/P(Y = j) is given in the chart below.The maximum value of this
ratio is approximately 2.89, which c may be set equal to.

In-Class Exercise. Use the acceptance-rejection method for continuous distributions to simulate
a random variable X having probability density function f (x) = 6x(1− x) on the interval [0, 1].
This is a so-called Beta(2,2) distribution. Create a histrogram of the distribution of X based off of
100,000 simulation replicatons.

Solution. In this case since X is defined on the interval [0, 1], we will choose the alternative distri-
bution G to be a Uniform[0, 1] random variable. The maximum value of f (x) on [0, 1] is 3/2 and
the probability density function of a Uniform[0, 1] is g(y) = 1. We may therefore set c = 3/2.

18 Simulating Normal Random Variables

The family of normal random variables is paramterized by a mean µ and variance σ2. A normal
random variable with a mean of 0 and a variance of 1 is referred to as a standard normal random
variable. A standard normal random variable has a probability density function given by

f (x) =
1√

2πσ2
e−x2/2, x ∈ R.

If X is a standard normal random variable, then

Z = σX + µ

is a N(µ, σ2) random variable.

The inverse transform method is difficult to implement for normal random variables because the
CDF of a normal random variable cannot be expressed in a simple form and so the quantile func-
tion cannot be written explicitly. The acceptance-rejection method is a possibility if one chooses an
appropriate alternative density g. In this section we present two alternative methods specifically
designed to simulate normal random variables.
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18.1 The Box-Muller method

The Box-Muller method generates two independent N(0, 1) random variables. One of these can then
be used via the relationship above to generate a N(µ, σ2) random variable. The method works
as follows. First, generate two independent Uniform[0, 1] random variables, labeled U1 and U2.
Then, set R = −2 ln(U1) and V = 2πU2. Finally, the two independent N(0, 1) random variables
are given by Z1 =

√
R cos(V) and Z2 =

√
R sin(V). Some pseudocode for the Box-Muller method

is given below.

1. Generate 2 independent random variables U1 and U2 both of which have a Uniform[0, 1] distri-
bution.

2. Set R = −2 ln(U1) and V = 2πU2.

3. Return Z1 =
√

R cos(V) and Z2 =
√

R sin(V).

18.2 The Polar Form of the Box-Muller method

A variant of the Box-Muller method is the polar form of the Box-Muller method. Both methods
generate a pair of N(0, 1) random variables, but the polar method is slightly faster since it avoids
having to calculate sines and cosines. The method works as follows. First generate a pair U1 and
U2 of independent Uniform[−1, 1] random variables. Next, set s = U2

1 + U2
2 . If s > 1, discard

U1 and U2 and repeat by generating a new pair of Uniform[−1, 1] random variables. Otherwise,
return

Z1 = (U1/
√

s)
√
−2 ln(s) and Z2 = (U2/

√
s)
√
−2 ln(s).

The pair Z1 and Z2 will be independent N(0, 1) random variables. Some pseudocode for the polar
form of the Box-Muller method is given below.

1. Generate 2 independent random variables U1 and U2 both of which have a Uniform[0, 1] distri-
bution.

2. Set s = U2
1 + U2

2 .

3. If s < 1, return Z1 = (U1/
√

s)
√
−2 ln(s) and Z2 = (U1/

√
s)
√
−2 ln(s). Otherwise, return to

Step 1.

18.3 Normal Random Vectors

A d-dimensional random vector X = (X1, ..., Xd) is said to be a standard normal random vector if each
of the X1, X2 through Xd are independent standard normal random variables. A d-dimensional
random vector X = (X1, ..., Xd) is said to be a normal random vector if it may be expressed as
X = µ + AZ, where µ = (µ1, ..., µd) is a d−dimensional vector, A is a d × d matrix and Z is a
d-dimensional standard normal random vector. Recall that in general the covariance between Xi
and Xj for 1 ≤ i, j ≤ d is given by

Cov(Xi, Xj) = E[(Xi − µi)(Xj − µj)].
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The d× d matrix Σ = AAT is referred to as the covariance matrix of X. This is because the (i, j)-th
entry of Σ is given by Cov(Xi, Xj). The vector µ = (µ1, ..., µd) is referred to as the mean vector of X.

In order to simulate a d-dimensional standard normal random vector Z, one can first simulate d
independent standard normal random variables using either the Box-Muller method or its polar
form given above, and then put them together into a vector. Thus, to simulate a normal random
vector one can use the relationship X = µ + AZ, where Z is a standard normal vector. In many
cases a normal random vector is parameterized by its mean vector and covariance matrix, denoted
by N(µ, Σ). Hence, in order to simulate using the relationship X = µ + AZ, a matrix A satisfying
AAT = Σ must be found. We present two ways of doing this.

18.3.1 Cholesky Factorization

The Cholesky factorization of Σ is a lower triangular matrix A such that AAT = Σ. For simulation
purposes this is useful because it reduces the number of computations required in order to com-
pute AZ. Most programming languages contain a Cholseky factorization function. The following
pseudocode simulates a normal random vector N(µ, Σ) using the Cholesky factorization of its
covariance matrix.

1. Compute the Cholesky factorzation AAT = Σ of the covariance matrix Σ.

2. Generate a standard normal random vector Z.

3. Set X = µ + AZ.

Example. Suppose that X is a normal random vector with mean vector µ = 0 and covariance
matrix

Σ =

 25 15 −5
15 18 0
−5 0 11

 .

Then, the Cholseky factorization of Σ is given by Σ = AAT, where

A =

 5 0 0
3 3 0
−1 1 3

 .

In order to simulate X we write X = AZ, where Z is 3-dimensional standard normal vector.
Writing this out in long form, one obtains that

X1 = 5Z1

X2 = 3Z1 + 3Z2

X3 = −Z1 + Z2 + 3Z3.

Example. Consider a bivariate normal random vector with a mean vector µ equal to 0 and a
covariance matrix given by

28



Σ =

(
1 0.5

0.5 1

)
.

The figure below is a fancier version of this plot.
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Example. Recall that if X1 and X2 are random variables, then their correlation is given by

ρ =
Cov(X1, X2)

σX1 σX2

,

where σX1 and σX2 are the standard deviations of X1 and X2, respectively. The Cholesky decom-
position of the covariance matrix of X = (X1, X2) is given by Σ = AAT, where

A =

(
σX1 0

ρσX2

√
1− ρ2σX2

)
.
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In-Class Exercise. Consider a bivariate normal random vector with a mean vector of µ = (1, 1)
and a covariance matrix

Σ =

(
1 −0.3
−0.3 1

)
.

Using the Cholesky factorization approach, generate 100,000 simulations of this random vector
and graph the output as a scatter plot.

18.3.2 The Principle Components Method

The principle components method decomposes a normal random vector X into its different
sources of variation. This is helpful for instance if the vector X = (X1, ..., Xd) represents the
random stock prices of d different companies. Each of the companies may be exposed to certain
macroeconomic factors representing the economy at large (such as interest rates, unemployment
rates, etc.) and these factors may represent the largest variations in X. Next, there may be in-
dustry specific factors such as the prices of certain commodities which affect some but not all
of the companies, and finally there is most likely some idiosyncratic noise that exists at the firm
level. Principal component analysis identifies and ranks these sources of variation from largest to
smallest.

Implementing principal components analysis requires a technique referred to as diagonalizing the
covariance matrix Σ. When diagonalizing Σ, one first creates a matrix V whose columns are the
unit eigenvectors of Σ and a diagonal matrix Λ whose diagonal elements are the associated eigen-
values of Σ. It then follows that Σ = VΛVT and so one may take A = V(Λ)1/2. Most program-
ming languages provide functions to diagonalize a matrix Σ. The following pseudocode simulates
a normal random vector N(µ, Σ) by diagonalizing its covariance matrix.

1. Diagonalize the covariance matrix Σ by solving VΛVT = Σ.

2. Generate a standard normal random vector Z.

3. Set X = µ + AZ where A = V(Λ)1/2.

Constructing A by diagonalizing Σ does not reduce the amount of time required to simulate X.
However, it can be used to construct optimal (in a sense described below) approximations to X.
The idea is as follows. Suppose that X will be simulated by setting X = µ + AZ, where Z is a stan-
dard normal random variable and A is obtained diagonalizing Σ as above. That is, A = V(Λ)1/2.
Also assume that the diagonal elements of Λ are ordered from largest to smallest. Now suppose
that due to processing constraints the entire matrix computation AZ cannot be performed. Then,
one option is to use the first 1 ≤ k < d components of Z when calculating AZ. In other words,
approximate X by a1Z1 + ... + akZk where aj is the jth column of A. This approximation provides
the optimal k dimensional approximation to X which minimizes the mean-squared error.

Example. Suppose again that X is a normal random vector with mean vector µ = 0 and covariance
matrix

Σ =

 25 15 −5
15 18 0
−5 0 11

 .
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Then, the diagonalization of Σ (up to two decimals) is given by Σ = VΛVT, where

V =

 0.78 −0.18 0.60
0.60 0.45 −0.66
−0.15 0.88 0.46

 and Λ =

37.50 0 0
0 12.02 0
0 0 4.50

 .

Hence, the matrix A = V(Λ)1/2 is given (up to two decimals) by

A =

 4.80 −0.62 1.26
3.69 1.55 −1.40
−0.91 3.04 0.97

 .

18.4 The Composition Method

The composition method works as follows. Suppose that the distribution function of a random
variable X is given by

F(x) = p1F1(x) + p2F2(x) + ... + pKFK(x), x ∈ R,

where p1 + p2 + ... + pK = 1 and each Fk is the distribution function of some random variable
Xk. This for instance would be the distribution of a random variable generated by first rolling a
k-sided die to determine the distribution of the random variable and then generating a random
variable from that distribution.

The composition method follows from the description of X. First, generate a random variable Y
which is equal to k with probability pk for k = 1, 2, ..., K. Next, suppose that Y = y. Then, generate
a random variable Xy which has distribution Fy. In order for the method to be useful, it should be
easy to generate a random variable from any of the distributions F1 through FK.

If each Fk in the above is an exponential distribution with rate λk, then the distribution of F is
referred to as a hyperexponential distribution. In this case, since an exponential distribution is easy
to simulate, the composition approach is straightforward to implement.

In-Class Exercise. Consider a hyperexonential distribution with

p1 = 1/2, p2 = 1/4 and p3 = 1/4,

and

λ1 = 1, λ2 = 2 and λ3 = 3,

Using the composition approach, generate 100,000 simulations of this random variable and graph
the output as a histogram.
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18.5 The Convolution Approach

Some random variables are constructed as the summation of two simpler random variables. For
instance, if X1 represents the time at which customer 1 arrives to a bank, and X2 represents the
amount of time between when customers 1 and 2 arrive to the bank, then T = X1 + X2 is the time
at which customer 2 arrives to the bank. The distribution of T is referred to as the convolution of
the distributions of X1 and X2. In general, the distribution of the convolution is hard to compute,
which makes it difficult to apply the techniques we have learned so far in order to simulate it.
However, if one can simulate directly from the distributions of X1 and X2, then T may be simulated
by adding X1 and X2 together. This method of simulation is referred to as the convolution approach.

Example. Suppose that X1 and X2 in the bank example above are exponential random variables
with rate λ. Then, T = X1 + X2 has an Erlang distribution with shape parameter 2 and scale parameter
λ. More generally, an Erlang distribution with shape parameter n and scale parameter λ may be written
as the sum of n independent and identically distributed exponential random variables with rate
parameter λ.

Example. A lognormal random variable X may be written as X = exp(Y), where Y is a normally
distributed random variable with mean µ and variance σ2. We use the notation LN(µ, σ2) to
denote this random variable. Lognormal random variables are commonly used to model stock
prices. Using the convolution approach one can simulate a lognormal random variable by fist
simulating the normal random variable Y and then exponentiating to obtain X.
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Example. A chi-square distribution with 1 degree of freedom may be written as X = Z2, where Z is a
standard normal random variable. Hence, in order to simulate a chi-square random variable with
1 degree of freedom one can first simulate a standard normal random variable and then square
it. A chi-square distribution with n degrees of freedom is the sum of n independent chi-square ran-
dom variables each with 1 degree of freedom. This may also be simulated using the convolution
approach.

Example. Student’s* t-distribution with ν degrees of freedom may be written as the random variable
X = Z/

√
V/ν, where Z is a standard normal random variable and V is an independent chi-square

distribution with ν degrees of freedom.

19 Session 4: Monte Carlo Simulation

Summer 2019 - Instructor: Josh Reed

Teaching Assistant: Haotian Song

In this session, Monte Carlo simulation is introduced. Also discussed are output analysis and run
legnth control.

20 Monte Carlo Overview

Monte Carlo simulation is a statistical technique which provides estimates of some unknown
quantity of importance. Although it can seemingly take many different forms the underyling
idea of Monte Carlo is nearly always the same. There exists some unknown quantity µ which we
would like to estimate. In order to do so a sequence of independent and identically distributed
random variables Z1, Z2, ..., ZN with mean equal to µ is simulated on a computer. Their sample
mean

Z̄ =
Z1 + Z2 + ... + ZN

N

is then taken as our estimate of µ.

The quantity µ to be estimated can take many different forms. It can be the price of a stock option,
the probability that a company goes bankrupt or even the value of some complicated integral.
However, the underlying Monte Carlo framework will not change. This is a useful point to re-
member as we move forward.

21 The Law of Large Numbers

The theoretical underpinning for Monte Carlo simulation is the law of large numbers. This impor-
tant theorem from probability states that as the size of a sample of independent and identically
distributed random variables grows to ∞, the sample mean approaches the population mean. As
a reminder from probability, the law of large numbers is stated here.
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The Law of Large Numbers. Let Z1, Z2, ..., be independent and identically distributed random
variables with mean µ. Then, with probability 1,

Z1 + Z2 + ... + ZN

N
→ µ as N → ∞.

Example. Consider the problem of estimating the mean of a geoemtric random variable Z with
probability of success 1/p. Although we know ahead of time that µ = 1/p, it is still instructive to
see Monte Carlo simulation in action. The following R code simulates N copies of Z and returns
their sample mean as an estimate of µ. It then runs the function geometric_estimate_mu with
p = 1/5 for various values of N and graphs the output as a scatter plot. As the number of
replications grows large the estimates become closer to the true mean of 5.
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Example. Suppose that X is an exponential random variable with rate U3 where U is uniformly
distributed on the interval [1, 2]. Calculate P(X > 1). By conditioning on the value of U this
probability may expressed as

P(X > 1) =
∫ 2

1
e−u3

du,

which cannot be simplified. Monte Carlo simulation may be used to estimate the probability
instead. First generate a sequence U1, U2, ..., UN of Uniform[1, 2] random variables and their cor-
responding exponential random variables X1, X2, ...XN . Next, for each n = 1, ..., N, set

Zn =

{
1 if Xn > 1,
0 otherwise.

(1)

Each Zn is now a Bernoulli random variable with a mean of P(X > 1).

The following R code implements the procedure above sequentially from N = 1 to 1, 000. For each
value of N the previous N − 1 estimate is used together with the value of ZN . As the number of
replications grows the estimate converges to P(X > 1) as shown in the graph.

Example. One surprising application of Monte Carlo simulation is computing difficult integrals.
Consider the integral

∫ 1

0
x3/2e−xdx.

This integral does not have a nice solution but it can be computed using Monte Carlo simulation.
Let Z = U3/2e−U where U is a Uniform[0, 1] random variable. Then,

E[Z] = E[U3/2e−U ] =
∫ 1

0
x3/2e−xdx.

Thus by simulating independent and identically distribution copies of Z Monte Carlo can be used
to estimate the value of the integral. The following is a histogram of 100,000 Monte Carlo esti-
mated values of the integral where each simulation was run for 100 replications.
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Example. A well known application of Monte Carlo simulation is to estimate the area or volume
of an object. This can be illustrated by trying to estimate the area of a circle with a radius of 1. The
answer is of course π but it it useul to see how Monte Carlo can accomplish this. Plus it shows a
way to use Monte Carlo to estimate π!

Suppose that a circle with radius 1 is centered inside the square [−1, 1]× [−1, 1]. Let U = (U1, U2)
be a random point uniformly distributed inside the square and set

X =

{
1 if U2

1 + U2
2 ≤ 1,

0 otherwise.
(2)

Then, X equals 1 if U lands in the cirlce and is 0 otherwise. The mean of X is the probability that
U lands in the circle which is equal to the area of the circle divided by 4, the area of the square.
Setting Z = 4X we now obtain a random variable whose mean is the area of the circle, or π!

In-Class Exercise. Suppose that a room contains S individuals. What is the probability at least 2
people share a common birthday? Assume that each person’s birthday is uniformly distributed
over all 365 days in a year (leap years are not counted here). The answer is surprisingly larger than
one might expect. For intance it turns out that only 23 people are needed to achieve at least a 50%
probability. Write a Monte-Carlo simulation in R that estimates the probability for an arbitrary S.

In-Class Exercise. Suppose that n guests are invited to a party and that each guest upon arrival
hands their coat to an attendant. At the end of the night, when each guest leaves the party, the
attendant returns to them a random coat. Write a Monte Carlo simulation to estimate the average
number of guests who receive the correct coat for values of n ranging from 2 to 100.
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22 An Application to Option Pricing

A European call option is an agreement between a buyer and seller where the seller provides the
buyer with the option to buy a share of stock in a specific company at some future date T ≥ 0
referred to as the expiration date. The price at which the seller agrees to sell the stock is the strike
price of the option and is denoted by K ≥ 0. If the market price of the stock on the expiration date
is greater than the strike price of the option, then the buyer should exercise the option to buy the
stock at K and sell it on the market at S(T) yielding a profit of S(T)− K. If the price of the stock
on the expiration date is less than the strike price, then the option expires worthless. We say that
the payoff of the option on the expiration date is max(S(T)− K, 0).

Under certain assumptions on the behavior of the stock price the Black-Scholes formula may be
used to price the option at time 0. The formula requires 3 additional quantities besides the strike
price and expiration date. They are as follows. The risk-free interest rate which is denoted by
r. This can be thought of as the return on a short-dated government bond. The volatility of the
underlying stock which is denoted by σ. Loosely speaking this is related to the swings in price of
the stock. The initial price of the stock at time 0, denoted by S(0).

The Black-Scholes price of the option at time 0 is now given by

Φ(d1)S(0)−Φ(d2)Ke−rT,

where

d1 =
1

σ
√

T

(
ln
(

S(0)
K

)
+

(
r +

σ2

2

)
T
)

,

d2 = d1 − σ
√

T, and Φ is the CDF of a standard normal random variable.

Example. Consider a European call option with a strike price of K = $45 and an expiration date
of T = 1/2 years from now. Suppose that the underlying stock is currently trading at S(0) = $40
a share, has a volatility of σ = 30% and the risk-free interest rate is 2% per year. In order to price
the option using the Black-Scholes formula, we first calculate

d1 =
1

0.3
√

1/2

(
ln
(

40
45

)
+

(
0.02 +

(0.3)2

2

)
(1/2)

)
= 0.34

and d2 = 0.34− 0.3×
√

1/2 = 0.27. The price of option is then given by

Φ(0.34)40−Φ(0.27)45e−0.01 = $1.74.

In the Black-Scholes framework the price of the underlying stock at time T is given by the lognor-
mal random variable
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S(T) = S(0) exp((r− (1/2)σ2)T + σN(0, T)).

The value of the option at the initial time T = 0 is given by its expected discounted payoff at the
expiration date. In other words, it is given by

E[e−rT max(S(T)− K, 0)].

This suggests the following Monte Carlo approach to call option pricing.

1. For each j = 1, ..., N,

Generate $S_j$ and

Set $Z_j = e^{-rT}max(S_j-K,0)$

2. Return (Z1 + ... + ZN)/N

The following R code implements the function mc_call which uses the Monte Carlo pseudocode
above to price a European call option. For a given number of simulation replications, the function
returns a sequence of estimates starting with the estimate formed just from Z1 and ending with
the estimate formed by Z1 through ZN .

Exampe. Consider again a European call option with a strike price of K = $45 and an expiration
date of T = 1/2 years from now, where the underlying stock is currently trading at S(0) = $40 a
share, has a volatility of σ = 30% and the risk-free interest rate is 2% per year.

In-Class Exercise. A European put option is an agreement between a buyer and seller where the
seller provides the buyer with the option to sell a share of stock in a specific company at some
future date T ≥ 0 referred to as the expiration date. The price at which the seller agrees to buy the
stock is the strike price of the option and is denoted by K ≥ 0. If the market price of the stock on the
expiration date is less than the strike price of the option, then the buyer should exercise the option
to buy the stock on the market at S(T) and sell the stock at K thus yielding a profit of K− S(T). If
the price of the stock on the expiration date is greater than the strike price, then the option expires
worthless. We say that the payoff of the option on the expiration date is max(K− S(T), 0).

Just as in the case of a European call option, in the Black-Scholes framework, assuming a risk-free
interest rate of r, a volatility of the underlying stock denoted by σ, and an initial price of the stock
at time 0, denoted by S(0), the price of the underlying stock at time T is given by the lognormal
random variable

S(T) = S(0) exp((r− (1/2)σ2)T + σN(0, T)).

The value of the put option at the initial time T = 0 is given by its expected discounted payoff at
the expiration date. In other words, it is given by

E[e−rT max(K− S(T), 0)].
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Now consider a European put option with a strike price of K = $45 and an expiration date of
T = 1/2 years from now, where the underlying stock is currently trading at S(0) = $40 a share,
has a volatility of σ = 30% and the risk-free interest rate is 2% per year. Write a Monte Carlo
simulation to estimate the price of this option based off of 10,000 simulations.

23 Confidence Intervals and The Central Limit Theorem

The sample mean estimate of µ reported from a Monte Carlo simulation is close but not equal
to the true value of µ. One common way to deal with this is to use the statistical concept of a
confidence interval. A confidence interval provides a range of possible values for µ and the true
value of µ is said to lie in this interval with a certain level of confidence which is usually expressed
as a perecentage. The confidence level can roughly be interpreted as the probability that µ lies
within the confidence interval, given the samples generated.

The theoretical result used for constructing a confidence interval is the central limit theorem which
we state below.

Theorem Let Z1, Z2, ..., be independent and identically distributed random variables with finite
expectation µ and variance σ2. Then, for each z ∈ R,

P
(
(Z1 + Z2 + ... + ZN)− Nµ

σ
√

N
≤ z
)
→ P(N(0, 1) ≤ z) as n→ ∞.

In words, the central limit theorem states that a sum of independent and identically distributed
random variables is approximately a normal random variable.

Example. Recall that an Erlang distribution with shape parameter n and scale parameter λ may
be written as the sum of n independent and identically distributed exponential random variables
with rate parameter λ. The central limit theorem implies that if n is large then the Erlang dis-
tribution is approximately normally distributed. The last 3 graphs below iilustrate the density
function of an Erlang distribution with scale parameter 1. As n increases from 1 to 2 to 3 the
density function of the Erlang distribution resembles the normal density function more and more.

Example. Recall that an Erlang distribution with shape parameter n and scale parameter λ may
be written as the sum of n independent and identically distributed exponential random variables
with rate parameter λ. The central limit theorem implies that if n is large then the Erlang dis-
tribution is approximately normally distributed. The last 3 graphs below iilustrate the density
function of an Erlang distribution with scale parameter 1. As n increases from 1 to 2 to 3 the
density function of the Erlang distribution resembles the normal density function more and more.

The central limit theorem can be used to construct confidence intervals for Monte Carlo simulation
as follows. First, simulate a sequence Z1, Z2, ..., ZN of independent and identically distributed ran-
dom variables with mean µ (the unknown quantity) and standard deviation σ and then compute
their sample mean

Z̄ =
Z1 + Z2 + ... + ZN

N
.
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Next, let zα/2 be such that P(N(0, 1) > zα/2) = α/2 and set

L = Z̄− zα/2
σ√
N

and U = Z̄ + zα/2
σ√
N

.

It then follows by the central limit theorem that approximately

P(L ≤ µ ≤ U) = 1− α.

Thus, thus confidence interval

[
Z̄− zα/2

σ√
n

, Z̄ + zα/2
σ√
n

]

yields a confidence level of 100(1− α)% for the unknown quantity µ.

The pseudocode below summarizes the procedure for finding a 100(1− α)% confidence interval.

1. For j=1,. . . ,N,

Generate $Z_j$

2. Set Z̄ = (Z1 + ... + ZN)/N and

L = Z̄− zα/2
σ√
n

and U = Z̄ + zα/2
σ√
n

3. Return [L,U]

The standard deviation σ of each Zj is necessary to construct the confidence interval above but in
most cases it is not known. Replacing σ by the sample standard deviation s is one way to deal with
this. Recall that if Z1, Z2, ..., ZN is a sequence of independent and identically distributed random
variables, then their sample standard deviation is

s =

√√√√ 1
N − 1

N

∑
j=1

(Zj − Z̄)2,

where Z̄ as usual is their sample mean. In this case,[
Z̄− zα/2

s√
N

, Z̄ + zα/2
s√
N

]

may be used as a 100(1− α)% confidence interval for µ.
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Sometimes in order to account for the fact that Z̄ is only approximately normal, zα/2 is replaced
with the equivalent quantile from Student’s t-distribution. Assuming that N random variables
from the distribution of Z have been simulated, Student’s t-distribution with N − 1 degrees of
freedom should be used. Denoting the corresponding quantile by tα/2,N−1, the 100(1− α)% confi-
dence interval is then given by

[
Z̄− tα/2,N−1

s√
N

, Z̄ + tα/2,N−1
s√
N

]
.

The quantile tα/2,N−1 from Student’s t-distribution is larger than the corresponding quantile zα/2
from the normal distribution and so using it produces wider and more conservative confidence
intervals.

24 Confidence Intervals for Option Pricing

Consider again a European call option with a strike price of K = $45 and an expiration date of
T = 1/2 years from now. Also suppose that the underlying stock is currently trading at S(0) = $40
a share, has a volatility of σ = 30% and the risk-free interest rate is 2% per year.

The R code below calls the function mc_call_ci 200 times, each time calculating a 95% confidence
interval based on 10,0000 simulations. The output is then presented as a graph. Most of the
confidence intervals contain the true price of the call option but their upper and lower limits
varry.

25 Run Length Control for Confidence Intervals

The process of determining the minimum number of simulation replications required in order
to ensure that the Monte Carlo estimation error of µ is less than or equal to some pre-specified
amount is referred to as run length control.

There are several methods of run length control, two of which are discussed below. Both of these
approaches are based on the following analysis. Suppose that due to either internal or external
constraints, some unknown quantity µ must be estimated by a confidence interval with an error
of no more than κ > 0 at a confidence level of 100(1− α)%. Next recall that if N replications of the
unbiased random variable Z are generated, the resulting 100(1− α)% confidence interval is

[
Z̄− zα/2

σ√
N

, Z̄ + zα/2
σ√
N

]
.

Here, σ is the standard deviation of Z and is assumed to be known. In this case, with confidence
level 100(1 − α)% the maximum estimation error made when using this confidence interval is
zα/2σ/

√
N. So, the minimum number of replications of Z that must be generated is given by

N ≥
z2

α/2σ2

κ2 .
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The one problem in implementing this analysis is that in most cases the value of σ, the standard
deviation of Z, is not known ahead of time. The following two methods address this issue.

25.1 The Two Stage Approach

In the two stage approach, two independent batches of replications of the random variable Z are
created. In the first batch, N1 ≥ 1 replications of Z are generated and from these replications
the sample standard deviation of Z, denoted by s, is calculated. The standard deviation σ is then
replaced by the sample standard deviation s in the inequality above and it is determined if the
number N of replications already run satisfies the inequality or not. If it turns out that enough
simulations have already been run, then the approach proceeds directly to calculating the sample
mean estimate of µ and the corresponding confidence interval from the N replications already
run. On the other hand, if the inequality is not satisfied, then the approach continues to run
enough replications until it is. Generally speaking, the value of N1 should be set large enough to
ensure a reasonably accurate estimate of the sample standard deviation but not too large that it
substantially reduces the efficiency of the approach.

Pseudocode for the two stage approach is given below.

1. For j=1,. . . ,N_1, Generate Zj.

2. Set Z̄ = (Z1 + ... + ZN1)/N1 and

s =

√√√√ 1
N1 − 1

N1

∑
j=1

(Zj − Z̄)2.

3. Set N? = dz2
α/2s2/κ2e.

4. If N1 ≥ N?, return Z̄ and its associated confidence interval

[
Z̄− zα/2

s√
N1

, Z̄ + zα/2
s√
N1

]
.

5. If N1 < N?, generate Zj for j = N1 + 1, ..., N?.

6. Set Z̄ = (Z1 + ... + ZN?)/N? and

s =

√√√√ 1
N? − 1

N?

∑
j=1

(Zj − Z̄)2.

7. Return Z̄ and its associated confidence interval

[
Z̄− zα/2

s
N?

, Z̄ + zα/2
s√
N?

]
.
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25.2 The Sequential Approach

The sequential approach updates its estimate of the sample mean and sample standard deviation
of Z after each new replication of Zj . It then checks if the inequality above is satisfied by the
updated sample mean, sample standard deviation and the increased number of replications. The
moment the inequality is satisfied, the approach returns the most recent sample mean along with
the desired confidence interval.

Pseudocode for the sequential approach is given below.

1. Set N = 0

2. While TRUE

Set N = N + 1.

Generate ZN .

Set Z̄ = (Z1 + ... + ZN)/N and

s =

√√√√ 1
N − 1

N

∑
j=1

(Zj − Z̄)2.

Set N? = dz2
α/2s2/κ2e.

If N ≥ N?, end while.

4. Return Z̄ and its associated confidence interval

[
Z̄− zα/2

s√
N

, Z̄ + zα/2
s√
N

]
.

25.3 Example

Consider again a European call option with a strike price of K = $45 and an expiration date of
T = 1/2 years from now. Also suppose that the underlying stock is currently trading at S(0) = $40
a share, has a volatility of σ = 30% and the risk-free interest rate is 2% per year.

The R code below implements the sequential approach which guarantees an error of no more than
$0.10 when using Monte Carlo simulation to price this option. The blue curve on the output graph
is the approach’s estimate of the minimum number of replications needed in order to achieve an
error of no more than $0.10. The orange line is a 45 degree line. The point at which the two
lines cross is the minimum number of replications required in order to achieve the desired level of
accuracy.

26 Absolute vs. Relative Errors

There are at least 2 ways to compare an estimate Z̄ to its true value µ. The first is referred to as the
absolute error and is given by |Z̄− µ|. Both the two stage and the sequential approach control the
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simulation run length in order to bring the absolute error below some predefined threshold. One
potential pitfall of using absolute error is that if the true value itself is tiny, then even seemingly
small absolute errors may be large relative to the true value itself. Oppositely, first glance big
absolute errors may actually be relatively small if the true value itself is large. This leads to the
concept of relative error which is defined by

|Z̄− µ|
|µ| .

Notice that the numerator in the definition of relative error is just the absolute error and the |µ| in
the denominator is a normalizing constant. Both of the run length control algorithms discussed
above can be modified in order to reduce the relative error below some predefined threshold.

27 Processing Time Allocation

An estimator Z̄ is said to be unbiased if its expectation is equal to the true value µ of the quantity
being estimated. Often times one may have available two unbiased estimators of the same under-
lying quantity µ, and a decision must be made on which of the two estimators to use. One way
to make this decision is to choose the estimator with the lower variance. This make sense since all
else being equal, a lower variance estimator will result in tighter confidence intervals.

In many settings there may only be a limited amount of computer processing time available for
running a simulation algorithm and creating an estimate. In this setting variance is still an im-
portant factor in selecting an estimator but it is not the only consideration either. For instance,
consider again two unbiased sample mean estimators Z̄ and W̄ which are based off of the replica-
tions Z1, Z2, ..., and W1, W2, ..., respectively. Suppose that the variance of each Zj is smaller than the
variance of each Wj but the amount of processing time required to generate a Zj is greater than the
amount of processing time required to generate a Wj. In this case, even though each Zj may have
a smaller individual variance than a corresponding Wj, one cannot simulate as many Zj as Wj due
to the high-level processing time constraint on the total amount of time that can be devoted to the
simulation.

In order to balance the tradeoff between the variance and the run time of an estimator, it is helpful
to introduce some notation. Suppose that Z̄ is a sample mean estimator which is based off of
generating a sequence of random variables Z1, Z2, ..., where each Zj has a variance of σ2 and takes
τ units of processing time to generate. Also suppose that due to external constraints there are only
T total units of processing time available to devote to the simulation. In this case, because each
replication requires τ units of processing time, and only a total of T units of time are available, it
follows that at most bT/τc replications of Zj can be generated before terminating the simulation.
Hence, the estimator is given by

Z̄ =
Z1 + Z2 + ... + ZbT/τc

bT/τc .

Now recall from the central limit theorem that Z̄ may be approximated by a normal random vari-
able with a mean of µ and a variance of σ2/bT/τc, which is roughly equal to σ2τ/T. Thus, if
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several sample mean estimators are available to choose from, each with different variances and
processing times per replication, in order to reduce the variance of Z̄, one should select the esti-
mator whose replications which minimizes σ2τ.

28 Biased Estimators

An estimator Z̄ is said to be biased if E[Z̄] is not equal to µ, the underlying quantity which is to be
estimated. It might seem strange at first to construct an estimate which is biased, however in many
cases it may be very difficult or overly complicated to construct an estimate which is unbiased.

Example. Consider the problem of estimating the ratio of the expectations of two random vari-
ables X and Y. That is, the problem of estimating E[X]/E[Y]. In this case a natural approach is
to generate say n samples X1, ..., Xn from the distribution X and n samples Y1, ..., Yn from the dis-
tribution Y, and then to take the ratio of their sample means. That is to compute X̄/Ȳ. However,
this estimate is biased as

E
[

X̄
Ȳ

]
6= E[X]

E[Y]
.

Even though the estimate X̄/Ȳ in the example above is biased, the bias becomes smaller as the
number of samples drawn from the distributions of X and Y increases. This is a common feature of
many unbiased estimators. One can reduce their bias at the expense of taking up more processing
time. Although not the case in the example above, an increase in processing time is often required
to lower the bias of each individual replication Xj. In a situation with limited processing time, one
has to make a decision between simulating a small number of replications each with a low bias
or a larger number of replications but each with a higher bias. The central limit theorem implies
that the benefit of simulating a larger number of replications is that it reduces the variance of the
sample mean estimate X̄.

There exists an error measurement which captures both the bias and the variance in an estimate.
The mean squared error of an estimate X̄ relative to its true value µ is given by

MSE = E[(X̄− µ)2].

The expression on the righthand side above can be decomposed as

E[(X̄− µ)2] = (E[X̄]− µ)2 + E[(X̄− E[X̄])2].

Note that the first term on the righthand side above is the bias squared and the second term is the
variance of the estimator. Hence, by selecting an estimator that minimizes the mean squared error
one is able to minimize the sum of these two important quantities.

47



29 Session 5: Variance Reduction

Summer 2019 - Instructor: Josh Reed

Teaching Assistant: Haotian Song

Recall that in Monte Carlo simulation if Z̄ is the sample mean estimator of some unkown quantity
µ, then the 100(1− α)% confidence interval for µ is given by

[
Z̄− zα/2

σ√
n

, Z̄ + zα/2
σ√
n

]
,

where σ2 is the variance of the Zj’s used to form Z̄. In this session we discuss two methods which
change the distribution of Z in order to reduce its variance. The benefit of these variance reduction
techniques is that they result in tighther confidence intervals and more accurate estimates of µ.

30 The Method of Control Variates

Suppose that (X1, Y1), (X2, Y2), ..., (XN , YN) is a sequence of independent and identically dis-
tributed random pairs where the mean of each Xj is equal to µ, the unknown quantity that we
would like to estimate. Next, let µY be the mean of the Yj’s and b be a real number (to be chosen
further below) and set

Zj = Xj − b(Yj − µY), j = 1, 2, ..., N.

It then follows that Z̄, the sample mean of the Zj’s is an unbiased estimator of µ.

The idea behind control variates is to select a good value of b which will reduce the variance of
the Zj’s realtive to the variance of the Xj’s. This will result in Z̄ having a lower variance than X̄
and so tighter confidence intervals too. It turns out that the optimal b to use is given by

b? = Cov(X, Y)/σ2
X

and that using this value of b the ratio between the variances of Z̄ and X̄ is 1− ρ2
X,Y, where the

correlation between X and Y is

ρX,Y =
Cov(X, Y)

σXσY
.

This implies that the control variates approach works best when there is a high correlation between
X and the control variate Y.

One problem when implementing the control variate approach is that Cov(X, Y) and σ2
X may not

be known ahead of time in order to determine b?. In this case b? may be approximated by
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bN =
∑N

j=1(Xj − X̄)(Yj − Ȳ)

∑N
j=1(Xj − X̄)2

.

If N is large enough this will be close to the true value of b?.

Example. Consider the problem of estimating E[eU ] where U is a Uniform[0, 1] random variable.
In this case ordinary Monte Carlo results in an estimator with a variance of Var(eU) = 0.2420. On
the other hand using U as a control variate results in an estimator with a variance of 0.0039. The
following R code plots both the ordinary Monte Carlo estimate (red dots) and the optimal control
variate estimate (blue dots)

Example. Let X be a random variable and consider the problem of estimating P(X ≤ x) for some
value x. As discussed previously this can be accomplished using the Bernoulli random variable

Y =

{
1 if X ≤ x,
0 otherwise.

A good control variate to pick in this case is the value of X itself. This is because X is usually
highly negatively correlated with Y. The optimal value of b is given by

b? =
E[X|X ≤ x]− E[X]

P(X > x)

and the relative reduction in variances is

1− ρ2
XY = 1− 1

σ2
X

(
F(x)

1− F(x)

)
(E[X|X < x]− E[X])2.

Example. Consider our usual example of a European call option with a strike price of K = $45
and an expiration date of T = 1/2 years from now. The underlying stock has an initial price at
time T = 0 of S(0) = $40 a share, a volatility of σ = 30% and we assume that the risk-free interest
rate is 2% per year.

We now price this option by Monte Carlo simulation using the method of control variates. It is
important that any control variate we pick possess two properties. The first is that its expectation
be known ahead of time. The second is that it possess a high degree of correlation with the original
estimate. In the case of a European call option, one natural choice which satisfies both of these
criteria is the terminal price S(T) of the underlying asset. In particular, recalling that S(T) may be
written as

S(T) = S(0) exp
((

r− σ2

2

)
T + σN(0, T)

)
,

it follows that E[S(T)] = $40.40. In-Class Exercise. Consider a European put option with a strike
price of K = $45 and an expiration date of T = 1/2 years from now. Also suppose that the
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underlying stock is currently trading at S(0) = $40 a share, has a volatility of σ = 30% and the
risk-free interest rate is 2% per year.

Use the method of control variates to price this option based on 10,0000 simulation replications
where the terminal price of the underlying stock is used as the control variate.

31 Multiple Control Variates

The control variates approach can be extended to multiple control variates. Suppose that

(X1, Y1,1, Y1,2, ..., Y1,r), (X2, Y2,1, Y2,2, ..., Y2,r), ..., (XN , YN,1, YN,2, ..., YN,r)

is a sequence of independent and identically distributed random vectors where the mean of each
Xn is equal to µ, the unknown quantity that we would like to estimate. Next, let µp be the mean of
the Yn,p’s and (b1, b2, ..., br) a vector of coefficients to be discussed below. Then, for each simulation
replication n = 1, ..., N, set

Zn = Xn − b1(Yn,1 − µ1)− b2(Yn,2 − µ2)− ....− br(Yn,r − µr).

It follows that the variance of each Zn is given by

σ2
Z = σ2

X − 2
r

∑
p=1

bpCov(X1, Y1,p) +
r

∑
p=1

r

∑
q=1

bpbqCov(Y1,p, Y1,q).

and that Z̄, the sample mean of the Zn’s, is an unbiased estimator of µ.

The optimal coefficients b?1 , ..., b?r to minimize σ2
Z can be difficult to find since in most situations the

covariances terms are not known. An alternative is to estimate each covariance term individually
and then minimize the variance expression above resulting in a coefficient vector bN = (bN

1 , ..., bN
r ).

A second characterization of bN is the solution to the least squares linear regression

Xn = a + b1Yn,1 + b2Yn,2 + ... + brYn,r + εn,

where εn is a random noise term for n = 1, ..., N.

31.1 The Asian Call Option

The payoff of an Asian call option depends on the average price of the underlying stock over a set
of monitoring dates. Specifically, suppose that an Asian call option has monitoring dates t1, t2, ..., tM
and a strike price of K. Then, at its expiration date T ≥ 0 the option has a payoff of max(S̄− K, 0),
where

S̄ =
1
M

(S(t1) + S(t2) + ... + S(tM)).
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The price of the option at the initial time T = 0 is equal to its expected discounted payoff
e−rTE[max(S̄− K, 0)].

When pricing an Asian call option in the Black-Scholes framework it is assumed that the distri-
bution of the random vector (S(t1), S(t2), ..., S(tM)) is a multivariate log normal distribution with
parameters µ and Σ, where

µm =

(
r− σ2

2

)
tm

for m = 1, ..., M, and

Σm,p = σ2 min(tm, tp)

for m = 1, ..., M, and p = 1, ..., M. As usual r is the risk-free interest rate and σ is the volatility of
the underlying stock. This is equivalent to saying that for each monitoring date tm,

S(tm) = exp(Xm),

where (X1, ..., XM) is a multivariate normal random vector with mean vector µ and variance-
covariance matrix Σ.

Example. Consider an Asian call option with a strike price of K = $45 and an expiration date of
T = 1/2 years from now. Also assume that the underlying stock has an initial price at time T = 0
of S(0) = $40 a share, a volatility of σ = 30% and that the risk-free interest rate r is 2% per year.
Suppose also that there are 4 monitoring dates of the option given by 1/8, 1/4, 3/8 and 1/2 of a
year from now.

One natural multiple control variate to use in this case is the vector of stock prices at each of the
monitoring dates. That is, to let

Yn = (Sn(1/8), Sn(1/4), Sn(3/8), Sn(1/2))

for n = 1, ..., N. The expected value of the stock price on each of the monitoring dates is given by

E[S(1/8)] = $40.10, E[S(1/4)] = $40.20, E[S(3/8)] = $40.30, E[S(1/2)] = $40.40.

32 Antithetic Variables

Antithetic variables is a technique to reduce simulation variance by generating pairs of random
variables where each random variable in the pair has an expectation equal to the unknown quan-
tity µ but there is some negative correlation between the two components. The idea is as follows.
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Suppose that (X1, Ẋ1), (X2, Ẋ2), ..., (XN , ẊN) is a sequence of independent and identically dis-
tributed pairs of random variables where each Xn and Ẋn have the same distribution whose mean
is equal to the unknown quantity µ. Ordinarily there will be some correlation between Xn and Ẋn
in order for the method to be effective. Now setting

Zn =
Xn + Ẋn

2
,

each Zn has a mean equal to µ and a variance which may be written as

σ2 = 2Var(X) + Cov(X1, Ẋ1).

The antithetic estimator of µ is given by Z̄, the sample means of the Zn’s. Recalling that each Zn
requires 2 replications (one for Xn and one for Ẋn) we now see that the antithetic variable estimator
Z̄ has a smaller variance than the ordinary Monte Carlo estimator X̄ (with 2n samples) if

Cov(X1, Ẋ1) < 0.

Example. Suppose that X1, X2, ..., XN is a sequence of independent and identically distributed
random variables whose mean is equal to the unknown quantity µ. Moreover, suppose that each
Xn is generated by the inverse transform method. That is,

Xn = F−1(Un),

where F is the CDF of the Xn’s and Un is a Uniform[0, 1] random variable. Ordinary Monte Carlo
will estimate µ by the sample mean X̄. In the antithetic approach a second sequence Ẋ1, Ẋ2, ..., ẊN
of independent and identically distributed random variables can be generated by setting

Ẋn = F−1(1−Un),

where Un is the same Uniform[0, 1] random variable used above to generate Xn. Because 1−Un
is also a Uniform[0, 1] random variable, Xn and Ẋn have the same distribution but since the same
Un is used to generate both of them, there is some correlation between the two. In fact, it can
be shown that Cov(Xn, Ẋn) < 0 so it is always the case that this approach results in a variance
reduction.

Example. Suppose that Xn is an exponential random variable with rate 1 that is generated by
using the inverse transform method. This means that

Xn = − ln(1−Un)

where Un is a Uniform[0, 1] random variable. Its corresponding antithetic random variable is
given by
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Ẋn = − ln(Un)

.

Example. If both Xn and Ẋn are functions of some underlying variable Yn, where Xn is an in-
creasing function of Yn, and Ẋn is a decreasing function of Zn, then it is always the case that
Cov(Xn, Ẋn) < 0 and the antithetic approach results in a variance reduction.

Example. Consider again the problem of estimating E[eU ] where U is a Uniform[0, 1] random
variable. In this case the ordinary Monte Carlo estimator results in a variance of Var(eU) = 0.2420.
On the other hand, setting

Z =
eU + e1−U

2
,

results E[Z] = E[eU ] and Var(Z) = 0.0039.

32.1 An Application to Option Pricing

Recall that in the Black-Scholes framework the price of a European call option with a strike price
of K expiring at time T is given by E[X] where

X = e−rT max(S(T)− K, 0)

is the discounted payoff of the option at expiration. We now apply the antithetic variable tech-
nique by finding a random variable Ẋ which has the same distribution as X but is negatively
correlated with it. In order to do so recall that

S(T) = S(0) exp
((

r− σ2

2

)
T + σN(0, T)

)
,

where N(0, T) is a normal random variable with a mean of 0 and a variance of T. Since the
distribution of N(0, T) is symmetric about the origin it has the same distribution of −N(0, T) and
so we can set

Ẋ = e−rT max(Ṡ(T)− K, 0),

where

Ṡ(T) = S(0) exp
((

r− σ2

2

)
T − σN(0, T)

)
.

Both X and Ẋ will have the same distribution as one another. Moreover, X is increasing in N(0, T)
and Ẋ is decreasing in N(0, T) and so (X, Ẋ) is a candidate antithetic pair.
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The following R code implements the function mc_european_call_antithetic which prices a Eu-
ropean call option using Monte Carlo simulation with the antithetic variables described above. For
a given number of simulation replications, the function returns a sequence of running estimates.

Example. Consider as usual a European call option with a strike price of K = $45 and an expira-
tion date of T = 1/2 years from now. The underlying stock has an initial price at time T = 0 of
S(0) = $40 a share, a volatility of σ = 30% and we assume that the risk-free interest rate is 2% per
year.

In-Class Exercise. Consider a European put option with a strike price of K = $45 and an expiration
date of T = 1/2 years from now. Also suppose that the underlying stock is currently trading at
S(0) = $40 a share, has a volatility of σ = 30% and the risk-free interest rate is 2% per year.

Use the method of antithetic variables to price this option based on 10,0000 simulation replications.

33 Session 6: Variance Reduction Continued

Summer 2019 - Instructor: Josh Reed

Teaching Assistant: Haotian Song

In this session, stratified sampling and importance sampling variance reduction techniques are
introduced.

34 Stratified Sampling

Suppose that Z is a random variable whose mean is equal to some unknown quantity µ which
we would like to estimate. Stratified sampling is a variance reduction technique where the set of
values that Z can take is first partitioned into different subsets or “strata” and then Z is condition-
ally generated from each stratum a specified number of times. The sequence of random variables
generated from this procedure are not identically distributed. Their sample mean is however an
unbiased estimator of µ which is sufficient for most Monte Carlo purposes.

The details of stratified sampling are as follows. The set of values that Z can take is first partitioned
into a family of disjoint subsets A1, A2, ..., AK. Next, let

pk = P(Z ∈ Ak), k = 1, ..., K,

be the probability that Z lies in the kth stratum. Moreover, suppose that it has been determined
ahead of time that a total of N replications of Z will be simulated. Then, the algorithm generates
Nk = Npk replications of Z conditional on Z lying in the kth stratum. That is, corresponding to
the kth stratum, a sequence of independent random variables Zk,1, Zk,2, ..., Zk,Nk is generated who
distribution is given by

P(Zk,n ≤ x) = P(Z ≤ x | Z ∈ Ak).
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We assume for convenience that each Nk is an integer. The estimator of µ is given by

Z̄ =
1
n

K

∑
k=1

Nk

∑
n=1

Zk,n.

The fact that Z̄ is unbiased follows from the identity

E[Z] = p1E[Z | Z ∈ A1] + p2E[Z | Z ∈ A2] + ... + pKE[Z | Z ∈ AK].

The variance of Z̄ is given by

Var(Z̄) =
1

N2

K

∑
k=1

Nkσ2
k =

1
N

K

∑
k=1

pkσ2
k ,

where σ2
k is the variance of the Zk,n’s. It may be shown that Var(Z̄) is always smaller than the

variance of the estimator formed by averaging N independent and identically distributed samples
from the distribution of Z.

The quantities σ2
k in the expression above for the variance of the stratified sampling estimator

are typically unknown, which means they cannot be used to construct confidence intervals for Z̄.
However, they may be estimated from the simulation output. Specifically, for each k = 1, ..., K, let

σk =

√√√√ 1
Nk − 1

Nk

∑
n=1

(Zk,n − Z̄k)2

be the sample standard deviation of Zk,1, Zk,2, ..., Zk,Nk , where Z̄k is the sample mean of
Zk,1, Zk,2, ..., Zk,Nk . Then, setting

s2 =
K

∑
k=1

pkσ2
k ,

it follows that a 100(1− α)% confidence interval for Z̄ is given by

[
Z̄− zα/2

s√
N

, Z̄ + zα/2
s√
N

]
.

Example. Consider the problem of sampling N random variables which are uniformly distributed
in the square [0, 1]× [0, 1]. This can be accomplished using ordinary Monte Carlo by generating
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two independent Uniform[0, 1] random variables U1 and U2 and then forming the pair (U1, U2).
Stratified sampling may also be applied. For instance the square [0, 1]× [0, 1] may be partitioned
into 4 quadrants with N/4 random variables uniformly sampled from each quadrant. The R code
below illustrates this stratified sampling for N = 10, 000 with the samples from each quadrant
labeled different colors.

Example. Suppose that

f (u) =

{
−u if − 1 ≤ u ≤ 0,
u2 if 0 ≤ u ≤ 1.

(3)

Then, the integral

∫ 1

−1
f (u)du

is equal to E[ f (U)] where U is a Uniform[−1, 1] random variable. This expectation may be esti-
mated using stratified sampling by first setting Z1,n = f (U1,n) where U1,1, U1,2, ..., U1,N are Uni-
form [−1, 0] random variables, next setting Z2,n = f (U2,n) where U2,1, U2,2, ..., U2,N are Uniform
[0, 1] random variables and finally setting

Z̄ =
1

2N

(
N

∑
n=1

Z1,n +
N

∑
n=1

Z2,n

)
.

Example. Consider a game show where contestants select 1 of 4 doors and receive whatever prize
is behind it. The distribution of the value of the prize behind door i has CDF Fi for i = 1, 2, 3, 4.
Let Z be a generic random variable represnting the prize that the contestant receives assume that
there is a 1/4 chance of selecting each door. Rather than using the composition method to simulate
Z and estimate its expected value, stratified sampling may be used. In this case, exactly 1/4 of the
samples come from the distribution Fi of the value of the prize behind door i for i = 1, 2, 3, 4.

35 An Application to Option Pricing

Recall that in the Black-Scholes framework the price of a European call option with a strike price
of K expiring at time T is given by E[Z] where

Z = e−rT max(S(T)− K, 0)

is the discounted payoff of the option at expiration. We now apply stratified sampling to estimate
E[Z]. In order to do so recall that

S(T) = S(0) exp
((

r− σ2

2

)
T + σ

√
TN(0, 1)

)
,

where N(0, 1) is a standard normal random variable. In this example we choose to stratify the
standard normal random variable N(0, 1). In order to do so we select 4 strata corresponding to
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the 1st, 2nd, 3rd and 4th quantiles of the distribution of N(0, 1). The corresponding intervals are
given by

(−∞,−0.67], (−0.67, 0], (0, 0.67], (0.67,+∞).

Since each strata corresponds to a quantile, it follows that pk = 1/4 for k = 1, 2, 3, 4.

Example. Consider a European call option with a strike price of K = $45 and a expiration date
of T = 1/2 a year from now. Assume that the underlying stock has an initial price at time T = 0
of S(0) = $40 a share, a volatility of σ = 30% and the risk-free interest rate is 2% per year. The R
code below uses the function mc_call_strat to graph 100 instances of the running estimate of the
option price for up to 1,600 simulation replications.

35.1 Optimal Sampling Proportions for Stratified Sampling

In the above stratified sampling procedure the number of samples drawn from each strata is in
direct proportion to the probability that the random variable Z lies in that strata. A more general
sampling procedure is as follows.

Suppose as above that the stratum A1, A2, ..., AK have been chosen already and that N samples of
Z will be generated with Nk samples coming from stratum k for k = 1, ..., K, where

N1 + N2 + ... + Nk = N.

We do not assume that N_k = Np_k where pk = P(Z ∈ Ak) but do require that the sum of the
Nk’s be equal to N. Now let Zk,1, Zk,2, ..., Zk,Nk be the sequence of random variables corresponding
to the kth strata. Then, an unbiased estimator of µ is given by

Z̄ =
1
N

K

∑
k=1

pk

qk

Nk

∑
n=1

Zk,n,

where qk = Nk/N is the fraction of samples that correspond to the kth strata. If qk = pk, this
estimator corresponds to the original stratified sampling estimator above.

It turns out that the variance of the estimator is given by

Var(Z̄) =
1
N

K

∑
k=1

pk

qk
σ2

k ,

where σ2
k is the variance of the Zk,n’s, and the optimal qk’s in order to minimze the variance are

given by

q?k =
pkσk

∑K
k=1 pkσk

,
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for k = 1, ..., K. Substituting this expression into the formula for the variance of Z̄ given above, the
minimum variance for the estimator is

1
n

(
K

∑
k=1

pkσ2
k

)
.

When the standard deviations σk for k = 1, ..., K, are not known ahead of time a test run can be
performed for each strata where the conditional random variables are simulated and the sample
standard deviation of the strata is calculated from the output. The quantities q?k are next esti-
mated using the formula above with the true standard deviation replaced by the sample standard
deviation. One may then proceed as usual with the stratified sampling algorithm.

Example. Consider again the problem of computing the integral

∫ 1

−1
f (u)du

where

f (u) =

{
−u if − 1 ≤ u ≤ 0,
u2 if 0 ≤ u ≤ 1.

(4)

In this case the integral can be written as E[ f (U)] where U is a Uniform[−1, 1] random variable.
Defining the two strata [−1, 0] and [0, 1] we have that σ2

1 = 1/12 and σ2
2 = 4/45 in which case

q?1 = 0.49 and q?2 = 0.51.

36 Importance Sampling

Importance sampling is a powerful technique for reducing estimator variance. The basic setup
is as follows. Suppose that the unknown quantity µ to be estimated may be written as the ex-
pectation of a function h of some random variable X. That is, assuming that X has a pdf f , one
has

µ = E[h(X)] =
∫ ∞

−∞
h(x) f (x)dx.

Hence, one can estimate µ by first generating X1, X2, ..., XN according to the distribution of X and
then calculating the sample average

1
N

N

∑
n=1

h(Xn).

The variance of h(X) might be large making implementation of the algorithm above inefficient.
Importance sampling attempts to reduce variation by selecting an alternative distribution G and
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expressing µ as the expectation of a different function of the random variable Y which has distri-
bution G . Specifically, assuming that G has a pdf g, note that

∫ ∞

−∞
h(x) f (x)dx =

∫ ∞

−∞
h(y)

f (y)
g(y)

g(y)dy.

So, it also follows that

E
[

h(Y)
f (Y)
g(Y)

]
=

∫ ∞

−∞
h(y)

f (y)
g(y)

g(y)dy = µ.

This suggests the following alternative Monte Carlo simulation approach for estimating µ. First
generate Y1, Y2, ..., YN according to the alternative distribution G and set

Zn = h(Yn) ·
f (Yn)

g(Yn)
, for n = 1, 2, ..., N.

The sample average Z̄ is then an ubiased estimate of µ. The function f /g is referred to as the
likelihood function.

In order for importance sampling to work, it must be the case that if g(y) = 0, then h(y) f (y) = 0,
otherwise the integral above will be infinity. Also, in some cases the variance of the importance
sampling estimator is larger than the variance of the ordinary Monte Carlo estimaor. One must
therefore be careful when selecting an alternative distribution G. This is discussed further below.

Example. Consider the problem of estimating p = P(N(0, 1) > 4) where N(0, 1) is a standard
normal random variable. This can be accomplished using ordinary Monte Carlo by first generat-
ing a sequence X1, X2, ..., XN of independent and identically distributed N(0, 1) random variables,
and then setting Zn = h(Xn) where

h(x) =

{
1 if x > 4,
0 otherwise,

(5)

and computing the sample average Z̄. The standard deviation of each Zn in this case is
√

p(1− p)
which is very large compared to p the quantity being estimated.

Now let G be an alternative distribution with pdf

g(y) =

{
e−(y−4) if y > 4,
0 otherwise.

(6)

Then, letting Y1, Y2, ..., YN be a sequence of independent and identically distributed N(0, 1) ran-
dom variables, and setting

Zn = h(Yn) ·
f (Yn)

g(Yn)
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where f is the pdf of a standard normal random variable, we have that Z̄ is an unbiased estimate
of p.

The following R code plots both the ordinary Monte Carlo estimate (red dots) and the importance
sampling estimate (blue dots) for P(X > 4). In many cases because P(X > 4) is so small the
Monte Carlo estimate is zero.

Example. Consider the problem of computing the integral

∫ 1

0
x−1/2e−xdx.

This can be accomplished using ordinary Monte Carlo by first generating a sequence X1, X2, ..., XN
of independent and identically distributed U[0, 1] random variables, and then setting Zn = h(Xn)
where h(x) = x−1/2e−x and computing the sample average Z̄. Unfortunately, this will result in an
estimator with infinite variance.

Suppose instead that we use importance sampling with an alternative distribution G which has
pdf g(x) = 2/

√
x on [0, 1]. In this case

h(y)
f (y)
g(y)

= 2e−y

and so generating Y1, Y2, ..., YN according to the alternative distribution G and then setting

Zn = 2e−Yn , for n = 1, ..., N,

the sample average Z̄ may also be used as an unbiased estimator for the value of the integral.
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37 An Application to Option Pricing

Recall that in the Black-Scholes framework the price of a European call option with a strike price
of K expiring at time T is given by E[Z] where

Z = e−rT max(S(T)− K, 0)

is the discounted payoff of the option at expiration. We now apply importance sampling to esti-
mate E[Z]. In order to do so recall that

S(T) = S(0) exp
((

r− σ2

2

)
T + N(0, σ2T)

)
.

Then, letting

h(x) = e−rT max
(

S(0) exp
((

r− σ2

2

)
T + x)

)
− K, 0

)
,

it follows that

E[e−rT max(S(T)− K, 0)] =
∫ ∞

−∞
h(x) f (x)dx,

where f is the pdf of a N(0, σ2T) random variable. This fits into the importance sampling frame-
work described above.
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Now replace the distribution f of the N(0, σ2T) random variable above with an alternative normal
random variable with the same variance but a different mean µ. The likelihood ratio is then given
by

f (y)
g(y)

=
e−y2/(2σ2T)

e−(y−µ)2/(2σ2T)

and the price of the option is

E[Z] = E
[

h(Y)
f (Y)
g(Y)

]
.

Example. Consider a European call option with a strike price of K = $45 where the initial price
of the underlying stock is S(0) = $40. Also assume that the risk free interest rate is r = 2%, the
volatility is σ = 30% and the expiration date is T = 1/2 year.

Using the formula above for the underlying stock price, the expected value of the underlying stock
at the expiration date of T = 1/2 years is $40.40. This is significantly less than the strike price of
$45. The probability that the option is executed at expiration is

P(S(1/2) > 45) = 0.27.

We can use importance sampling to increase the percentage of the time that the option pays off.
Suppose that our goal is to change the distribution of the underlying stock so that its expected
value at expiration is equal to the strike price of $45. In order to do this, we can replace the
distribution of the N(0, σ2T) random variable above with an alternative normal random variable
with the same variance but a mean of µ = 0.11.
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37.1 Output Analysis for Importance Sampling

Importance sampling does not always reduce variance. Sometimes it even significantly increases
variance. This makes properly choosing an alternative distribution g more important. The follow-
ing discussion shows how to calculate the variance of an importance sampling estimator.

Suppose as above that in order to estimate µ = E[h(X)] where X has a pdf f , a sequence
Y1, Y2, ..., YN of random variables with alternative distribution G has been generated and we set

Zn = h(Yn) ·
f (Yn)

g(Yn)
, for n = 1, 2, ..., N.

The estimator is then given by the sample mean Z̄. In this case, the variance of each Zn is
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σ2 =
∫ ∞

−∞

h2(x) f (x)
g(x)

f (x)dx− µ2.

Because µ is unknown, σ must be estimated from the simulation output. In particular, we can use
the sample standard deviation

s =
1

N − 1

N

∑
n=1

(
h(Yn)

f (Yn)

g(Yn)
− µ̄

)2

.

Then, a 100(1-α)% confidence interval for µ is given by

[
µ̄− zα/2

s√
n

, µ̄ + zα/2
s√
n

]
.

The variance of h(X) is given by

∫ ∞

−∞
h2(x) f (x)dx− µ2.

Comparing the variances of the estimators with and without importance sampling, the condition
for importance sampling to result in a reduction of variance is

∫ ∞

−∞
h2(x)

(
1− f (x)

g(x)

)
f (x)dx > 0.

Hence, in order for the alternative sampling distribution g(x) to provide a variance reduction it
must roughly speaking be greater than f (x) when h2(x) f (x) is large, and be less than f (x) when
h2(x) f (x) is small.

One way to choose an alternative distribution g is to note that if g(x) = h(x) f (x)/µ, then the vari-
ance of the importance sampling estimator will be zero. Usually the quantity µ is not known and
so this cannot be used as an alternative distribution but it still serves as a guide for selecting one.
In particular, one rule of thumb is that the alternative distribution g(x) should be proportional or
similar to h(x) f (x). One way to achieve this is to select g(x) so that it obtains its maximum at the
same x as does h(x) f (x).

Example. Consider again the problem of computing the integral

∫ 1

0
x−1/2e−xdx.

Using the importance sampling technique discussed above, the R code below plots 200 instances
of both the ordinary Monte Carlo and the importance sampling 95% condifdence intervals for the
integral value. Each instance is constructed from 10,000 simulations.
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37.2 Exponential Tilting

The technique used in the application to option pricing to change the mean of a normal random
variable is an example of a general method referred to as exponential tilting. The method works
as follows. Suppose as usual in the importance sampling framework that X is a random variable
with a a pdf of f and let

ψ(θ) = ln
∫ ∞

−∞
eθx f (x)dx, θ ∈ R.

The function ψ is referred to as the cumulant generating function of X. It is not always defined for
all θ but for convenience lets assume that it is. Now set the pdf of the alternative distribution G to
be

g(y) = eθy−ψ(θ) f (y), y ∈ R.

Then, the likelihood function is given by

f (y)
g(y)

= e−θy+ψ(θ), y ∈ R.

Also, the mean of a random variable Y with the distribution of g is

E[Y] =
∫ ∞

−∞
yg(y)dy =

∫ ∞

−∞
x eθx−ψ(θ) f (x)dx = ψ

′
(θ).

So, the expectation of Y is given by the derivative of ψ evaluated at θ.
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37.3 Comparison of Variance Reduction Methods

Each of the variance reduction methods discussed have advantages and disadvantages. One way
to compare the methods is based upon the simplicity of their implementation versus their effec-
tiveness. The easier the method is to implement the smaller the variance reduction tends to me.
Out of the 4 methods explained, antithetic variables is the easiest to use. It requires little knowl-
edge of the context in which the simulation is run but lacks the power of more sophisticated
methods. Control variates is the second easiest method to use. Selecting a good control variate
requires estimates of correlation but its implementation only requires knowledge the mean of the
control variate. Stratified sampling requires the ability to partition the distribution and tends to
deliver greater variance reduction. Importance sampling is the most powerful of the 4 methods.
It has the potential to reduce variance by levels not achievable by the other 3 methods. However,
selecting a good alternative distribution g is not always easy and can even increase variance.

The following graph provides boxplots of the Monte Carlo estimates of the call option price in our
running example using ordinary Monte Carlo and each of the 4 variance reduction techniques.
Each boxplot is based off of 10,000 simulation replications.

38 Session 7: Poisson Processes

Summer 2019 - Instructor: Josh Reed

Teaching Assistant: Haotian Song

In this session, a brief introduction to stochastic processes is given which is followed by the study
of Poisson processes.

39 Introduction to Stochastic Processes

The word “stochastic” comes from the Greek word “stokhastikos” which loosely speaking trans-
lates to “able to guess”. The English definition for “stochastic” is “random” or “involving chance
or probability”. Technically speaking, a stochastic process X is a collection of random variables.
The collection is usually indexed either according to the integers n = 0, 1, 2, ..., in which case the
process is referred to as a discrete time process, or it can be indexed by time t ≥ 0, in which case the
process is referred to as a continuous time process. In most cases, a discrete time process is denoted
by

X = {Xn, n = 0, 1, 2, ...},

and a continuous time process is denoted by

X = {Xt, t ≥ 0}.

The state space of a stochastic process specifies the range of possible values that the random vari-
ables of the process can take. The two main classifications for the state space of a stochastic process
are a discrete state space and a general state space. A discrete state space is any finite set of values

66



or possibly an infinite set of values which may be mapped to the integers. A general state space
is much more arbitrary and more or less covers anything else. It is important to point out that
these state spaces need not necessarily be described by numbers, they could for instance consist
of letters, colors, shapes etc. For the most part however, the stochastic processes encountered in
this class will take numeric values.

Some examples of stochastic processes are given below.

Example. The graph below tracks the number of regular season wins of the New York Mets
baseball team starting from their inaugural season of 1962 until the 2018 season. This is a discrete
time stochastic process with a discrete state space. In particular, its state space is the integers 0
through 162 since there are 162 games in a regular season.

Example. The following is a graph of the high temperature (in degrees Fahrenheit) recorded at
Central Park in New York City for each day of January 2019. This is a discrete time stochastic
process with a general state space. In particular, its state space is any number greater than -459.67
degrees Fahrenheit (absolute zero).

Example. The following is a graph of 3 stochastic processes. Each is a continuous time stochastic
process with a discrete state space. The upper blue line is the asking price for the stock of General
Electric trading on New York Stock Exchange over a 1 minute interval on March 21st, 2002. The
lower blue line is the bid price for the stock of General Electric over the same interval. The red
+’s correspond to points in time where transactions occur and their corresponding price. Because
activity on the exchange is continuously monitored, this stochastic processes is a continuous time
process. Its state space is discrete with the minimum difference between two prices being the tick
size.

40 The Bernoulli Process

The Bernoulli process is a simple stochastic process which illustrates several important concepts.
It is a discrete time stochastic process X = {Xn, n ≥ 0} where each Xn is a Bernoulli random
variable which is equal to 0 with probability p and equal to 1 with probability 1− p. Moreover,
the Xn’s are assumed to be independent of one another. In order to simulate a Bernoulli process
one only needs to simulate n independent and identically distributed Bernoulli random variables.

The following R code simulates a Bernoulli process and graphs its output.
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One interpretation of a Bernoulli process is that at each point in time n, the random variable Xn
records whether a specific event occurred or not. In particular, the random variable Xn is equal to
1 if the event occurred and 0 if not. As two examples, the event could for be whether a customer
arrived to a bank or if a coin which was tossed landed on heads.

In both cases, it natural to also keep track of the total number of events which have occurred up
to each point in time. This can be done by noting that for each n ≥ 1, the quantity

Sn =
n

∑
k=1

Xk

is the total number of events which have occurred by time n. We assume that S0 = 0. The process
S = {Sn, n ≥ 0} is a new stochastic process. It is zn example of a counting process whcih we discuss
more below. The R code below graphs S.
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Now consider the distribution of the number of events that have occurred by time n ≥ 1 in the
Bernoulli counting process. That is, consider the distribution of the random variable Sn. It turns
out that Sn has a binomial distribution with parameters n and p. We denote this type a random
variable by Binomial(n, p). In general, a Binomial(n, p) random variable represents the number of
times that an event has occurred out of n separate trials, where for each trial the probability of an
event occurring is p. A Binomial(n, p) random variable can take the values 0 through n, and the
probability of each of these values is given by

P(Binomial(n, p) = k) =
n!

k!(n− k)!
pk(1− p)n−k.

Here n! represents n factorial which is given by

n! = n× (n− 1)× (n− 2) × ...× 2× 1.

Example. Consider the number of times that a six-sided die lands on 1 out of a total of 4 rolls of
the die. This is a binomial random variable where the number of trials is n = 4 and the probability
of an event occurring at each trial is p = 1/6. In this case, the probability that 1 out of the 4 rolls
of the die is a 1 is given by

P(Binomial(4, 1/6) = 1) =
4!

3!(1)!
(1/6)(5/6)3 = 0.38.

One way to simulate a Binomial(n, p) random variable is by summing n Bernoulli random vari-
ables, each of which has a probability 1− p of equaling 0 and a probability p of equaling 1.
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41 Exponential Random Variables

Before we introduce Poisson processes it is helpful to first discuss exponential random variables.
Recall that a non-negative random variable X is said to have an exponential distribution with rate
λ > 0 if

P(X > x) = 1− e−λx, x ≥ 0.

The mean of an exponential random variable with rate λ is 1/λ and the variance is 1/λ2. It also
turns out as we will see shortly that the amount time between when two consecutive events of a
Poisson process occur is an exponential random variable.

A random variable X is said to possess the memoryless property if

P(X > t + s | X > t) = P(X > s) = e−λs, s, t ≥ 0.

In words, the memoryless property states that given that X is greater than t, the probability that
X is greater than t + s is equal to the unconditional probability that X is greater than s. It turns
out that exponential random variables are the only continuous random variables that possess the
memoryless property. Moreover, the memoryless property can be useful in helping to speed up
calculations involving exponential random variables.
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Example. There are two clerks working at bank and the amount of time that a customer spends
speaking with a clerk is an exponential random variable with rate λ. Suppose now that a customer
arrives to the bank and finds no line but both clerks are already busy serving customers.

• What is the probability that the newly arrived customer leaves the bank after both of the
customers already in service leave.

The answer to this problem is 1/2. The reason is that when the arriving customer enters service,
by the memoryless property of the exponential distribution, the remaining service time of the
customer still in service is an exponential random variable with rate λ. Hence, since the service
time of the customer entering service is also an exponential random variable with rate λ, it follows
that the two customers are equally likely to be the next customer to leave.

42 The Poisson Process

The Poisson process is a fundamental continuous time stochastic process. It is named after the
French scientist Simeon Poisson who made many contributions to mathematics. The Poisson pro-
cess is an example of a counting process.

Definition. A stochastic process N = {N(t), t ≥ 0} is said to be a counting proccess if

1. N(t) ≥ 0 for all t ≥ 0.

2. N(t) is integer valued for all t ≥ 0.

3. If s < t, then N(s) ≤ N(t).

4. For s < t, we have that N(t)− N(s) is the number of events occuring in the time interval
(s, t].

Counting processes are very useful due to their many potential real life applications such as mod-
eling the number of customers calling a telephone center, the number of buy orders submitted for
a particular stock or the number of users arriving to website.

One feature of counting processes that tends to make them easier to analyze is if they have inde-
pendent increments.

Definition. A counting process N = {N(t), t ≥ 0} is said to possess independent increments if
the number of events occuring in disjoint intervals of time are independent of one another.

The definition of a Poisson process is as follows.

Definition. A counting process N = {N(t), t ≥ 0} is said to be a Poisson process with rate λ > 0
if

1. N(0) = 0.

2. The process N has independent increments.

3. For s < t, the random variable N(t)− N(s) is Poisson distributed with mean λ(t− s).

In words, a Poisson process is a counting process whose increments are independent and Poisson
distributed. Note that Condition 3 above implies that for a Poisson process over any interval of
time (s, t] the average number of events that occur is λ(t− s) and
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P(N(t)− N(s) = k) = e−λ(t−s) (λ(t− s))k

k!
, k = 0, 1, 2, ...

Because the distribution of the number of events that occur over an interval of time only depends
on the length of the interval, and not its start and end times, Condition 3 implies that a Poisson
process has what is referred to as stationary increments.

Example. Suppose that customers arrive to a bank according a Poisson process N = {N(t), t ≥ 0}
with a rate of λ equal to 10 customers per hour.

• What is the averge number of customers that arrive to the bank over a 2 hour period of time?
The average number of customers that arrive to the bank over any 2 hour period of time is
Poisson distributed with a mean of 2× λ = 2× 10 = 20 customers.

• What is the probability that 5 customers arrive to the bank over a 1 hour period of time?
The number of customers that arrive to the bank over a 1 hour period of time is Poisson
distributed with a mean of λ = 10 customers. The probability that 5 customers arrive over a
1 hour period of time is therefore

e−10 105

5!
.

• What is the probability that 4 customers arrive to the bank over a 1 hour period of time and
that 15 customers arrive to the bank over a separate 2 hour period of time? The number of
customers that arrive to the bank over a 1 hour period of time is Poisson distributed with
a mean of λ = 10 customers and the number of customers that arrive to the bank over a 2
hour period of time is Poisson distributed with a mean of 2× λ = 20 customers. Moreover,
since these two periods of time are assumed separate, the number of customers arriving in
each period are independent. The probability is therefore given by

e−10 104

4!
e−20 2015

15!
.

The amount of time between when two consecutive events occur is referred to as an interarrival
time. It turns out that in a Poisson process with rate λ, the interevent times are independent of
one another and exponentially distributed with rate λ! This is a surprising and useful fact. By the
memoryless property of the exponential distribution, it implies that if we observe a Poisson pro-
cess at a random point in time, the amount of time until the next event is exponentially distributed
with rate λ. This explains why the number of events in disjoint intervals are time are independent
of one another.

Example. Suppose that starting at midnight visitors arrive to a webpage according to a Poisson
process N = {N(t), t ≥ 0} with a rate of λ equal to 1,000 customers per hour.

• What is the probability that the first visitor does not arrive to the webpage until at least
(1/500)th of an hour after midnight?

The amount of time after midnight until the 1st visitor arrives is an exponential random variable
with a rate of λ = $1, 000 customers per hour. Hence, letting X be the number of hours until the
first visitor arrives, we have that
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P(X > 1/500) = e−(1000·(1/500)) = e−2.

• Suppose that the 1st visitor has not arrived by (3/1,000)th of an hour after midnight. What
is the probability that they do not arrive by (1/100)th of an hour after midnight?

This can be answered by calculating the probability that X is greater than (1/100)th of an hour
given that it is greater than (3/1000)th of an hour. Applying the memoryless property for the
exponential distribution, we obtain that

P(X > (1/100) | X > (3/1000)) = P(X > (7/1000)) = e−(1000·(7/1000)) = e−7.

• Suppose that the 1st visitor arrives to the website at (6/1,000)th of an hour after midnight.
What is the probability that the 2nd visitor arrives to the website by (11/1000)th of an hour
after midnight?

This can be answered by calculating the probability that the amount of time between when the 1st
and 2nd visitors arrive is (5/1,000)th of an hour or less. Since the amount of time between when
visitors arrives is exponentially ditributed with a rate of 1,000 per hour, the probability is given by

= 1− e−(1000·(5/1000)) = 1− e−5.

43 Poisson Process Simulation

There are 2 main ways to simulate a Poisson process. The first is to use the fact that the times
between consecutive events in a Poisson process with rate λ are independent and exponentially
distributed with rate λ. Using this fact, if Xk is the amount of time between the (k− 1)st and kth
event, then the time at which the nth event occurs is given by

Sn =
n

∑
k=1

Xk, n = 1, 2, ...

where X1, X2, ..., are independent and identically distributed with rate λ. Letting S0 = 0, the
number of events which have occurred by time t ≥ 0 is given by

N(t) = max{n ≥ 0 : Sn ≤ t}.

In practice, one usually only needs to simulate a Poisson process up to some terminal time T ≥ 0
and so enough Xk’s must be generated until an Sn is reached which is greater than T, but nothing
more.

The following R code implements a function PoissonProcessOne. The function takes as input
the values of λ and T and outputs a vector of the ordered times at which the events of a Poisson
process with rate λ occur up until the time T using the algorithm alluded to above.

The following R code creates a plot of the cumulative number of events that occur up until time
T = 100 for 100 independent Poisson processes where the rates of the processes vary from 0.01 to
1 in increments of 0.01.
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A second method for simulating a Poisson process up until a terminal time T ≥ 0 relies on the
distributional properties of the times at which events occur up until time T given the total number
of events which have occured up until time T. In order to state this distributional result, we first
need some notation from statistics.

In order to state the above result in full generality, we first need to introduce the concept of order
statistics. Let {Xk, 1 ≤ k ≤ n} be a sequence of random variables. Next, for k = 1, ..., n, let X(k) be
the kth smallest random variable amongst the sequence {Xk, 1 ≤ k ≤ n}. If there are ties, we can
pick one of the kth smallest from amongst the {Xk, 1 ≤ k ≤ n} arbitrarily. The random variable
X(k) is referred to as the kth-order statistic of {Xk, 1 ≤ k ≤ n}. Moreover, the random vector
(X(1), ..., X(n)) is referred as the order statistic of the sequence {Xk, 1 ≤ k ≤ n}.

Result. Let N = {N(t), t ≥ 0} be a Poisson process with rate λ > 0. Given that N(T) = n, the
distribution of the vector of event times (S1, ..., Sn) is the same as that of the order statistic of n
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independent and identically distributed random variables, each which has a uniform distribution
over the interval [0, T].

The above result implies that given that we know that n events have occured by time T in a
Poisson process, we can generate the times at which those events occured by simulating n random
variables which are uniformly distributed between 0 and T and then arranging them in order.

Example. Suppose that calls arrive to a telephone call center according to a Poisson process with
a rate λ of 60 calls an hour.

• Given that 5 calls arrived between 1:00 p.m. and 1:06 p.m., what is the probability that 2 calls
arrived betwen 1:00 p.m. and 1:04 p.m.?

To answer this question we use the result above. Given that 5 calls arrived betwen 1:00 p.m. and
1:06 p.m., the distribution of the ordered times at which the calls arrived is the same as the order
statistic of 5 random variables uniformly distrbuted between 1:00 p.m. and 1:06 p.m. Each of
these random variables has a 2/3 probability of being between 1:00 p.m. and 1:04 p.m. Hence, the
probability that 2 calls arrived betwen 1:00 p.m. and 1:04 p.m. is the same as the probability of a
binomial random variables with 5 trials and probability of success 2/3 for each trial being equal
to 2. That is, the probability is

5!
2!3!

(
2
3

)2 (1
3

)3

.

In order to simulate the event times of a Poisson process with rate λ up until a time T ≥ 0,
one can first generate a Poisson random variable with a mean of λT and then, conditional on
the outcome of the Poisson random variable, generate the appropriate number of Uniform[0, T]
random variables and sort them in order from smallest to largest.

The following R code implements a function PoissonProcessTwo. The function takes as input
the values of λ and T and outputs a vector of the ordered times at which the events of a Poisson
process with rate λ occur up until the time T using the algorithm alluded to above.

The following R code creates a plot of the cumulative number of events that occur up until time
T = 100 for 100 independent Poisson processes where the rates of the processes vary from 0.01 to
1 in increments of 0.01.
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In-Class Exercise. Suppose that an online store has only 1 unit of inventory of a product and that
customers arrive to the store’s website according to a Poisson process with a rate λ of 1 customer
per minute. Each arriving customer offers a certan amount of money to buy the product and the
offers are independent and exponentially distributed with a mean of $10. For every minute of
time that the product is not sold, the store incurs a $2 holding cost or fractions thereof. The store
is considering various policies to sell the product in order to maximize their expected profit. The
policies are as follows.

• Accept the offer of the first customer that arrives.

• Accept the first offer that is at least $9.

• Accept the first offer that is at least $16.

• Accept the first offer that is at least $25.

Write a simulation to determine the expected profit for each of the 4 policies listed above. Which
one is the best?
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The average profits of each of the 4 policies are about $7.94, $14.10, $16.30 and $10.66, respectively.
So, it turns out that the 3rd policy is the best out of the 4.

44 Spatial Poisson Processes

A Poisson process in more than 1 dimension is referred to as a spatial Poisson process. The reason
for moving to higher dimensions is that not only are the times at which events occur part of the
process but their location is as well. This can be useful in applications related to transportation,
weather, telecommuncations and more.

We focus here on homogeneous 2-dimensional spatial Poisson processes and assume that the lo-
cation of each event lies somewhere in the unit square [0, 1]× [0, 1]. The process counting the total
number of events that occur in the square is a Poisson process with rate λ. The quantity λ is also
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referred to as the intensity of the proces. For any subset of the square, the process counting the
nunmber of events occuring in that subset is also a Poisson process but with a rate of λ multi-
plied by the area of the subset. If two subsets do not overlap, then their Poisson processes are
independent of each other.

Example. Suppose that the location of crimes in a city occurs according to a spatial Poisson pro-
cesses with an intensity of 8 crimes per day and that the city is 1 mile long by 1 mile wide.

• Calculate the probability that over 2 days, 5 crimes occur in a neighborhood of the city with
an area of 1/4 square mile.

The counting process of crimes that occur in a neighborhood of the city with an area of 1/4 square
mile is a Poisson processes with a rate of 8(1/4) = 2 crimes per day. Therefore number of crimes
that occur over 2 days is then Poisson distributed with a mean of 2× 2 = 4 crimes and so the
probability is

e−4 45

5!
.

• Calculate the probability that over 2 days 5 crimes occur in each of two separate neighbor-
hoods of the city both with an area of 1/4 square mile.

Since the 2 neighborhoods are asssumed to be separate, using the answer above we have that the
probability is

(
e−4 45

5!

)2

.

The following result is useful for simulating spatial Poisson processes.

Theorem. If N is a homogeneous Poisson process with intesnity λ, then the event locations are
idependent and identically distribution uniform random variables in the unit square.

The theorem above provides an algorithm for simulating a nonhomogeneous Poisson process with
intensity λ. First simulate a Poisson process with rate λ and then assign to each event a location
which is uniformly distributed on the unit square. The R code below implements this algorithm.
The function SpatialPoissonUnitSquare simulates a spatial Poisson process in the unit square.
The function takes as input the values of λ and T and outputs a list of 2 vectors. The first vector
provides the event times and the second vector the location of each event.
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Given a point in the unit square, one interesting quantity to consider is the distance to the nearest
event of a spatial Poisson process that has been run up until some terminal time T. This quantity
is referred to as the contact distance. It turns out that if we ignore boundary effects, the distribution
of the contact distance can be computed exactly. Suppose that u is a point in the unit square. Then,
there are no events within a distance of r from it if the circle of radius r centered at u has no events
in it. But the number of events that occur within a circle of radius r is Poisson distributed with
mean (λT)πr2. So, we have that

P(contact distance is greater than r) = exp (−λTπr2), r > 0.

In-Class Exercise. In an area of a city 1 mile long by 1 mile wide, the locations at which passengers
request to be picked up by cars in an online ride hailing service follows an independent spatial
Poisson process with a rate of 9 customers per minute. At the same time, the locations at which
the online ride hailing service’s cars become available folllows a spatial Poisson process with a
rate of 10 cars per minute, independent of the passenger arrivals.

Every 30 seconds, the service matches passengers with cars in the following way. The passenger
who arrived earliest is matched with the car that is closest to them. Next, the passenger who
arrived second earliest is matched out of the remaining cars with the car closest to them, and so
on and so forth. Any cars or passengers leftover at the end of this process drop out of the system
and the process starts afresh for the next 30 second time interval.

Use simulation to estimate the following for a random 30 second interval.

• The precentage of passengers who are not matched with a car.

• For those passengers who are matched with a car, the average euclidian distance between
their location and the location of the car they are matched with.

[1] "The average distance between a match in a 30 second interval is: "

0.135779320744179

[1] "The lower limit for 95% confidence interval for the average distance

between a match in a 30 second interval is: "

0.131325031327807

[1] "The upper limit for 95% confidence interval for the average distance

between a match in a 30 second interval is: "

0.140233610160551

[1] "A graph of the matchings from the most recent simulation run is: "
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45 Session 8: Extensions of Poisson Processes

Summer 2019 - Instructor: Josh Reed

Teaching Assistant: Haotian Song

Recall from the previous session that the definition of a Poisson process is as follows.

Definition. A counting process N = {N(t), t ≥ 0} is said to be a Poisson process with rate λ > 0
if

1. N(0)=0.
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2. The process N has independent increments.

3. For s < t, the random variable N(t)− N(s) is Poisson distributed with mean λ(t− s).

In this session, thinning and superpositions of Poisson processes, compound Poisson processes
and non-homogeneous Poisson processes are discussed.

46 Thinned Poisson Processes

In certain situations it is useful to classify each event of a Poisson process as either a Type 1 or
a Type 2 event. This can be accomplished by independently labeling each event as either a Type
1 event with probability p or a Type 2 event with probability 1− p. Two thinned versions of the
underlying Poisson process N may then be formed. These processes are denoted by N1 for the
process counting the numbe of Type 1 events, and N2 for the process counting the number of Type
2 events. The following result characterizes the processs N1 and N2 as well as how they are related
to one another.

Result. Suppose that N is an underlying Poisson process with rate λ and that each event of N
is classified as either a Type 1 or a Type 2 event with probability p or 1− p, respectively. Then,
the thinned processes N1 and N2 are independent Poisson processes with rates λp and λ(1− p),
respectively.

The above result is surprising. Not only are the thinned processes N1 and N2 Poisson processes,
they are also independent of one another! This can be useful when solving problems.

Example (https://www.math.ucdavis.edu/~gravner/MAT135A/resources/lecturenotes.pdf).
Suppose that customers arrive to a store according to a Poisson process at a rate λof 10 customers
per hour. Each arriving customer is male with probability 1/2 and female with probability 1/2.
Assume that 10 male customers arrive to the store between 10 am and 11 am.

• Calculate the probability that 10 female customers also arrive between 10 am and 11 am.

According to the result above, the arrival processes of male and female customers are independent
Poisson processes each with a rate of λ(1/2) = 5 customers per hour. The number of female
customers that arrive between 10 and 11 am is therefore Poisson distributed with a mean of 5 and
is independent of the number of male customers that arrive. The desired probability is then

e−5 510

10!
.

• Calculate the probability that at least 20 total customers enter bewteen 10 am and 11 am.

Given that 10 male customers arrive between 10 am and 11 am, at least 20 total customers arrive
if 10 or more female customers arrive. The answer is then

∞

∑
n=10

e−5 5n

n!
= 1−

9

∑
n=0

e−5 5n

n!
.

The result above provides a method to simulate a thinned Poisson process. Rather than simulat-
ing the underlying process N and then thinning it event-by-event, the two thinned Poisson pro-
cesses N1 and N2 can be simulated independently. The following R code implements the function
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PoissonProcessThinned using this idea. Its input is the arrival rate λ of the underlying Poisson
process, the terminal time T and the probabillity p of a Type 1 event, and it returns a list of 3
vectors which provide the event times of the underlying process and the two thinned processes,
respectively.

The following R code uses PoissonProcessThinned to graph the two thinned processes and the
underlying total arrival process over 1 hour of customers to the store in the example above.

Below is a scatterplot of the cumulative number of Type 1 customer arrivals vs. cumulative the
number of Type 2 customer arrivals in the example above over the course of 10 hours. The shape
of the plot reflects the fact that the numbers of each type of arrivals are independent of one another.
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The thinning result above can be extended to an arbitrary number of types of events.

Result. Suppose that N is a Poisson process with rate λ and that each event of N is classified as
a Type k event with probability pk for k = 1, ..., K. Then, the thinned processes N1, N2, ..., NK are
independent Poisson processes with rates λp1, λp2, ..., λpK, respectively.

Example. Suppose that customers arrive to a bank according to a Poisson process with a rate λ
of 60 customers per hour. Each arriving customer either uses the ATM with probability p1 = 0.4,
closes an account with probability p2 = 0.1, opens a new account with probability p3 = 0.2 or
speaks with a mortgage specialist with probability p4 = 0.3.

• Calculate the probability that over the course of one hour: 3 customers arrive to use the
ATM, 2 customers arrive to close their account, 4 customers arrive to open a new account,
and no customers arrive to speak with a mortage specialist.
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According to the result above, the arrival processes of customers to use the ATM, close their ac-
count, open a new account, and speak with a mortgage specialist are independent Poisson pro-
cesses with rates of 24, 6, 12 and 18 customers per hour, respectively. Moreover, these processes
are independent of one another. The desired probability is therefore

e−24 243

3!
e−6 62

2!
e−12 124

4!
e−18.

• Calculate the probability that over the course of one hour, 2 customers arrive to either open
or close their account.

The probability that a customer arrives to either open or close their account is p2 + p3 = 0.1+ 0.2 =
0.3. Therefore, according to the result above, the arrival process of customers to either open or
close their account is a Poisson process with a rate of (0.3)λ = 18 customers per hour. The desired
probability is therefore

e−18 182

2!
.

Sometimes the probability of an event being classified as a certain type depends on the time at
which the event occurs. Suppose for instance that events are classified as either Type 1 or Type
2 and if an event occurs at time t ≥ 0, the probability that it is a Type 1 event is p1(t) and the
probability that it is a Type 2 event is p2(t) = 1− p1(t). In this case, the thinning processes N1 and
N2 counting the number of Type 1 and Type 2 events are no longer Poisson processes but we still
have the following result.

Result. Suppose that N is a Poisson process with rate λ and that an event of N occurring a time
t ≥ 0 is classified as a Type 1 event with probability p1(t) or as a Type 2 event with probability
p2(t) = 1− p1(t). Then, the number of Type 1 and Type 2 events occuring by some time T ≥ 0 are
independent Poisson random variables with respective means

λ
∫ T

0
p1(t)dt and λ

∫ T

0
p2(t)dt.

Example. Suppose that customers arrive to a web site according to a Poisson process with a rate
of λ. Upon arrival to the site, each customer spends a random amount time with distribution F
browsing the site before exiting.

• Assuming that the amounts of time the customers spend browsing the site are independent
of another, and that the system is empty at time 0, what is the distribution of the number of
customers browsing the site at an arbitrary time T ≥ 0?

This is an example of an infinite server queue and we can answer the question using the result above.
Suppose that a customer arrives to the system at some time 0 ≤ t ≤ T and classify the customer
as a Type 1 customer if they are still in service at time T. Since the customer will still be in service
at time T if and only if their service time is greater than T − t, we have the probability that the
customer is a Type 1 customer is given by p1(t) = 1− F(T− t). It then follows by the result above
that the total number of customers in service at time T is Poisson distributed with mean
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λ
∫ T

0
p1(t)dt = λ

∫ t

0
(1− F(T − t))dt.

In-Class Exercise. G/G/∞ queue.

47 Superposition of Poisson Processes

Poisson processes can also be combined together. If N1 and N2 are separate Poisson processes,
then their sum N = N1 + N2 is referred to as the superposition of N1 and N2. The following result
characterizes the combined process N.

Result. If N1 and N2 are independent Poisson proceses with rates λ1 and λ2, respectively, then
their superposition N1 + N2 is a Poisson process with rate λ1 + λ2.

Example. Two types of subway trains arrive to a subway platform, express trains and local trains.
Express trains arrive according to a Poisson proces with a rate of λ1 = 6 trains per hour. Local
trains arrive according to a Poisson proces with a rate of λ2 = 8 trains per hour. The arrival
proceses of each type of train are independent of one another.

• Calculate the probability that a total of 16 trains arrive over a 1 hour interval.

Since the arrival processes are independent of one another, the combined process of express and
local trains is a Poisson process with a rate of λ1 + λ2 = 8 + 6 = 14 trains per hour. The total
number of trains that arrive over a 1 hour interval is therefore Poisson distributed with a mean of
14 and so the answer is given by

e−14 1416

16!
.

The result above can be extended to the superposition of an arbitrary number of independent
Poisson processes.

Result. If N1, N2, ..., NK are independent Poisson proceses with rates λ1, λ2, ..., λK, respectively,
then their superposition N1 + N2 + ... + NK is a Poisson process with rate λ1 + λ2 + ... + λK.

Example. Suppose that visitors arrive to a web page from 100 countries all over the world. From
each country, the arrival process is a Poisson proces with a rate λ of 1 visitor per second and the
arrival processes from country to country are independent of one another.

• Calculate the probability that no customers arrive over a 1/2 second interval.

Since there are 100 arrival processes that are independent of one another, and each is a Poisson
process with a rate λ of 1 visitor per second, the combined arrival process is a Poisson process with
a rate of λ = 100 visitors per second. The number of visitors that arrive over a 1/2 second interval
is therefore Poisson distribution with a mean of (1/2)100=50 visitors. The desired probability is
thus

e−50.
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The R code below generates a random time sampled arrival process to the web page over the
course of 1 second. The time sampling occurs every 0.01 seconds. Different countries are assigned
different colors in the graph.

In-Class Exercise. Superposition of renewal processes.

48 Nonhomogeneous Poisson Processes

A nonhomogeneous Poisson process is a generalization of the Poisson process where the rate at which
events occur changes over time. Its definition is as follows.

Definition. A counting process N = {N(t), t ≥ 0} is said to be a nonhomogeneous Poisson
process with rate function λ = {λ(u), u ≥ 0} if

1. N(0)=0.

2. The process N has independent increments.

3. For s < t, the random variable N(t)− N(s) is Poisson distributed with mean

∫ t

s
λ(u)du.

Note that unlike an ordinary Poisson process, a nonhomogeneous Poisson process does not have
stationary increments. Events are more likley to occur over intervals of time where the intensity
function λ is high. This is useful for modeling time varying arrival processes.
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Example. (Ross Probabilty Models Example 5.24) Siegbert runs a hot dog stand that opens at 8
a.m. From 8 a.m. until 11 a.m. customers arrive at a steadily increasing rate that starts with an
initial rate of 5 customers per hour at 8 a.m. and reaches a maximum rate of 20 customers per hour
at 11 a.m. From 11 a.m. until 1 p.m. the rate remains constant at 20 customers per hour. However,
the arrival rate then drops stedily from 1 p.m. until closing time at 5 p.m. at which time it has the
value of 12 customers per hour.

• If we assume that the numbers of customers arriving at Siegbert’s stand during disjoint time
periods are independent, then what is a good probability model for the preceding?

A good model to use for this example would be a nonhomogeneous Poisson process with rate
function λ = {λ(u), 0 ≤ u ≤ 9}, where

λ(u) =


5 + 5u, for 0 ≤ u < 3,
20, for 3 ≤ u < 5,
20− 2(u− 5), for 5 ≤ u ≤ 9.

• What is the probability that no customers arrive between 8:30 a.m. and 9:30 a.m. on Monday
morning?

The number of customers that arrive between 8:30 a.m. and 9:30 a.m. is Poisson distributed with
a mean of

∫ 1.5

0.5
λ(u)du = 10.

Hence, the probability that no customers arrive during this interval of time is e−10.

• What is the expected number of arrivals in this period?

The expected number of arrivals between 8:30 a.m. and 9:30 a.m. is 10 customers.

There are at least two ways to simulate a nonhomogeneous Poisson process. The first is to thin an
ordinary Poisson process in appropriate manner. This method is based on the following result.

Result. Suppose that N is a Poisson process with rate λ and that an event occuring at time t is
classified as a Type 1 event with probability p1(t). Then, the process N1 counting the number of
of Type 1 events is a nonhomogeneous Poisson process with rate function λ = {λp(t), t ≥ 0}.

In order to use the above result to simulate a nonhomogeneous Poisson process suppose that N is
a nonhomogeneous Poisson process with rate function λ and let λmax be such that λ(t) ≤ λmax for
all t. Then, setting

p1(t) =
λ(t)
λmax

, t ≥ 0,

the above result implies that the thinned process N1 is a nonhomogeneous Poisson process with
rate function λ.

The following R code uses this idea to implement the function NonhomogeneousOne which sim-
ulates the nonhomogeneous arrival process of the hot dog stand example. The value of λmax is
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chosen to be 20 which is the maximum arrival rate to the stand. The function does not take any
input and it returns the event times of the arrival process.

A second way to simulate a nonhomogeneous Poisson process up until a time T ≥ 0 relies on the
following result for the distribution of the arrival times given the total number of arrivals up until
the time T.

Result. Let N = {N(t), t ≥ 0} be a nonhomogeneous Poisson process with rate function λ =
{λ(u), u ≥ 0}. Given that N(T) = n, the distribution of the vector of event times (S1, ..., Sn) is the
same as that of the order statistic of n independent and identically distributed random variables,
each which have the distribution function
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F(t) =

{
m(t)
m(T) , for 0 ≤ t < T,

1, for t ≥ T,

where

m(t) =
∫ t

0
λ(u)du, t ≥ 0.

The above result implies that given that we know that n events have occured by time T in a Pois-
son process, we can generate the times at which those events occured by simulating n random
variables which are distributed acording to the distribution above. In order to simulate random
variables according to this distribution one can use whichever simulation method is most conve-
nient, e.g. inverse transoform method, accpetance-rejection method etc.

Example. Consider again the example of Siegbert’s hot dog stand.

• Given that 50 customers arrived between 8:00 a.m. and 12:00 p.m., what is the probability
that 20 customers arrived betwen 8:00 a.m. and 11:00 a.m.?

To answer this question we use the result above. Given that 50 customers arrived betwen 8:00
a.m. and 12:00 p.m., the distribution of the ordered times at which the calls arrived is the same
as the order statistic of 50 random variables with distribution function F(t) = m(t)/m(T) for
0 ≤ t ≤ T with T = 4. Each of these random variables has a m(3)/m(4) probability of being
between 8:00 a.m. and 11:00 a.m. which we can explicitly compute as being equal to 15/23.
Hence, the probability that 20 customers arrived betwen 8:00 a.m. and 11:00 p.m. is the same as
the probability of a binomial random variables with 50 trials and probability of success 15/23 for
each trial being equal to 20. That is, the probability is

50!
20!30!

(
15
23

)20 ( 8
23

)30

.

In order to simulate the event times of a nonhomogeneous Poisson process with rate function λ
up until a time T ≥ 0, one can first generate a Poisson random variable with a mean of m(T)
and then, conditional on the outcome of the Poisson random variable, generate the appropriate
number of random variables with distribution function m(t)/M(T) and sort them in order from
smallest to largest.

The following R code uses this idea to implement the function NonhomogeneousTwo which simu-
lates the nonhomogeneous arrival process of the hot dog stand example. The conditional random
variables of the arrival times are generated using the acceptance-rejection method with the uni-
form distribution between 0 and 9 chosen as the alternative distribution and the value of c set
equal to 360/283 The function does not take any input and it returns the event times of the arrival
process.
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49 Compound Poisson Processes

For modeling purposes it can be helpful for events to be of different sizes. In a compound Poisson
process, the times at which events occurs is a Poisson process with rate λ but the sizes of each of
the events are independent and identically distributed random variables. The compound Poisson
process is given by

NX(t) =
N(t)

∑
n=1

Xn, t ≥ 0,

where N is a Poisson process with rate λ, and X1, X2, ..., are independent and identically dis-
tributed random variables with distrbution F.
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Example. Suppose that groups of customers arrive to a movie theather according to a Poisson
process at a rate of 40 groups per hour. The distribution of the size of each group is as follows.

xj 1 2 3 4 5

P(X=xj) 0.10 0.25 0.50 0.10 0.05

• What is the average number of customers that arrive to the movie theater each hour?

On aveage 40 groups arrive to the movie theater each hour and the average size of each group is

1× 0.10 + 2× 0.25 + 3× 0.50 + 4× 0.10 + 5× 0.05 = 2.75 customers.

Therefore on averge 40× 2.75 = 110 customers arrive to the theater each hour.

The following R code simulates a compound Poisson process. The function Distribution

returns a discrete random variable according to the distribution above. The function
CompoundPoissonProcess simulates a compound Poisson process with event sizes according to
the disttribution above. Its input is the rate λ at which events occur and the terminal time T which
to simulate up to and its output is a list of 2 vectors. The first vector provides the event times and
the second vector the size of each event.

The following R code graphs the output of CompoundPoissonProcess over the course of 1 hour
assuming the parameters of the example above.
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The distribution of a compound Poisson process at a fixed time t ≥ 0 is a compound Poisson ran-
dom variable which does not admit a closed form for its distribution function. However, if λt is
large, then NX(t) can be approximated by a normal random variable with a mean of λtE[X] and a
variance of λtE[X2].

Example. Consider again the movie theater example above.

• What is the probability that 30 or more customers arrive in the first 12 minutes?

We can approximate the distribution of the number of customers that arrive in the first 12 minutes
by a normal random variable with a mean of λtE[X] = 22 customers and a variance of λtE[X2] =
67.6 customers2. Hence, the desired probability is approximately P(N(22, 76.6) > 30) which is
about 0.17. The true value of the desired probability is close to 0.15. The R code below graphs
simulation estimates of the desired probability ranging from 1 to 500 replications.
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The display below provides a histogram of 1,000 simulations of NX(t) for t = 0.05, 0.10, .0.15 and
0.20. Note that as t becomes larger, the shape of the histogram looks more like a normal distribtion.
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50 An Application to Insurance Risk

One application of compound Poisson processes is to insurance risk modeling. In the compound
Poisson model of insurance risk theory, an insurance company collects preimiums from its cus-
tomers at a constant rate and is subject to the random arrivals of claims which must be paid out.
The company’s capital at time t is modeled by

C(t) = c + pt−
N(t)

∑
n=1

Xn.

The process N = {N(t), t ≥ 0} is assumed to be a Poisson process with rate λ and represents the
times at which claims arrive. The random variable Xn is the size of the nth claim and it is assumed
that X1, X2, ..., are independent and identically distributed random variables. The parameter p > 0
is the rate at which premiums are paid and c is the company’s initial capital.

In order to avoid the company’s capital amount from eventually dropping below zero it must be
the case that the rate at which premiums come in is greater than the rate at which claims are paid.
This condition may be written as

p > λE[X].

One way to quantify how much excess premium income is being taken in relative to claims liabil-
ities is to write

p = (1 + θ)λE[X].

The quanity θ is referred to the safety loading. Even if the condition p > λE[X] is satisfied, the
company may be unlucky and one large claim or a series of smaller sized claims can cause it to
become insolvent. In this case we say that the company is ruined and one of the main focuses of
ruin theory is to calculate the ruin probability.

Now note that the company’s capital at time t may be written as C(t) = c− S(t), where

S(t) =
N(t)

∑
n=1

Xn − pt.

The time of ruin is then given by

Tc = min{t ≥ 0 : S(t) > c}.

There are at least two main quantities of interest in ruin theory. The first is the probability of ruin
before some finite time τ. This may be written as P(T_c ≤ τ). The second is the probability of
ruin at any time in the future. This may be written as P(Tc < ∞).

Both of the ruin probabilities mentioned are for the most part difficult to compute and no known
closed formulas exist for them. There are however a few special cases in which direct formulas
can be obtained.
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Result. Suppose that in the compound Poisson model of insurance risk claim sizes are exponen-
tially distributed with mean µ. Then, the probability of eventual ruin is given by

P(Tc < ∞) =
1

1 + θ
exp

(
− θ

1 + θ

c
µ

)
.

Example. Suppose that an auto insurnace business receives 3,000 claims a month and the distri-
bution of each claim size is exponentially distributed with an average size of $1,500. Moreover,
suppose that the company receives $5,000,000 in premium payments a month. In this case, the
company’s safety loading is 1/9 and its probability of eventual ruin is

P(Tc < ∞) =
9
10

exp
(
− 1

10
c

1500

)
.

The R code below graphs 9 simulations of one day of a sample path of the company’s capital
process in the example above assuming $10,000 of initial capital. Note that on sample paths the
company’s capital level always stays positive while on others the company becomes insolvent.
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Monte Carlo simulation is a useful tool if closed form expressions are not available for the prob-
ability of ruin. The probability of ruin before some finite time τ is straightforward to obtain by
Monte Carlo. Simulate N replications of the company’s capital process up until τ and then com-
pute the proportion of replications in which ruin occured.

Determining the probability of ruin at any time in the future is more difficult. This is because
it appears to require knowledge of the company’s capital levels infinitely far off into the future.
Importance sampling can be used to remedy this but we choose instead to focus on two simple
approximations. The first is to compute the probability of ruin up until some very large time T∞
as an approximation to the probability of eventual ruin. The larger T∞ is the better this approxi-
mation becomes. The second approximation is to select a very large capital level c∞ and compute
the proportion of simulation runs in which ruin occurs before c∞ is reached. The idea behind this
approximation is that once the capital level reaches c∞ ruin is unlikely to occur.
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Example. Suppose again that an auto insurnace business receives 3,000 claims a month and the
distribution of each claim size is exponentially distributed with an average size of $1,500. More-
over, suppose that the company receives $5,000,000 in premium payments a month. In this case,
the company’s safety loading is 1/9 and its probability of eventual ruin is

P(Tc < ∞) =
9
10

exp
(
− 1

10
c

1500

)
.

The R code below graphs the Monte Carlo estimate of P(Tc < ∞) for various levels of initial capital
up to $50,000 and using the approximation of simulating up until T∞=1 day. For each initial capital
level we perform 1,000 simulation runs. In this case, we have chosen T∞ to be only equal to 1 day
because the safety loading θ = 1/9 is large. The dashed red line in the curve is the true value of
P(Tc < ∞) using the formula above. Notice that the simulation estimates of the probabilities of
ruin are consisently lower than the true values. This is because there is a positive probability that
the company becomes insolvent only after 1 day. Increasing T∞ to be larger than 1 day reduces the
difference.

The R code below graphs the Monte Carlo estimate of P(Tc < ∞) for various levels of initial capital
up to $50,000 and running each simulation only up until the capital level c∞=$60,000 is reached.
For each initial capital level we perform 1,000 simulation runs. In this case, we have chosen c∞ to
be only equal to $60,000 because the safety loading θ = 1/9 is large. The dashed red line in the
curve is the true value of P(Tc < ∞) using the formula above. Notice that the simulation estimates
of the probabilities of ruin exhibit more variability than in the case above of simulating up until
T∞. For the most part they are below the true ruin probability as would be expected but every
once in a while they fall above due to the variance of the simulation estimate.

51 Session 9: Discrete Time Markov Chains

Summer 2019 - Instructor: Josh Reed

Teaching Assistant: TBD

In this session, discrete time Markov chains are studied.

52 Introduction to Discrete Time Markov Chains

A discrete time Markov chain is a stochastic process where conditional on the current state of the pro-
cess, the distribution of the future states of the process is independent of its past states. This prop-
erty is referred to as the Markov property of the process after the mathematician Andrey Markov. If
X = {Xn, n = 0, 1, 2, ...} is a Markov chain with a discrete state space then the Markov property
may be written as

P(Xn+1 = in+1|Xn = in, Xn−1 = in−1, ..., X0 = n0) = P(Xn+1 = in+1|Xn = in) (7)
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for n ≥ 0. The dynamics of most of the Markov chains that we study in this class will be time
homogeneous so that the probability on the righthand side above does not change with time.
Because of this we can simply write

P(Xn+1 = j|Xn = i) = Pi,j (8)

for all i and j in the state space. The matrix formed by the Pij is referred to as the 1-step transition
matrix of the chain.

Example. Each day Peter is either happy (H), so-so (S) or unhappy (U).

• If Peter is happy today, then he will be H, S or U tomorrow with probabilities 0.5, 0.4, 0.1,
respctively.

• If Peter is so-so today, then he will be H, S or U tomorrow with probabilities 0.3, 0.4, 0.3,
respctively.

• If Peter is unhappy today, then he will be H, S or U tomorrow with probabilities 0.2, 0.3, 0.5,
respctively.

If Xn denotes the Peter’s mood on day n, then {Xn, n ≥ 0} is a Markov chain with state space
S = {H, S, U} and one-step transition matrix

P =

 0.5 0.4 0.1
0.3 0.4 0.3
0.2 0.3 0.5

 .

Example. Consider a blackjack gambler who starts out with $c. The player gambler $1 each hand
with probability p and loses $1 each hand probability 1− p. Moreover, each hand is independent
of the others. Once the gambler has reached either $0 or $N, he quits. Model the winnings of the
gambler as a Markov chain.

If Xn denotes the winnings of the gambler after n hands, then {Xn, n ≥ 0} is a Markov process
with state space S = {0, 1, 2, ..., N}. The transition matrix P of X is given by P0,0 = PNN = 1 and

Pi,i+1 = 1− Pi,i−1 = p for i = 1, ..., N − 1.

The picture below illustrates the probabilities of transition between the various states of the gam-
bler’s Markov chain for the case of an upper limit of 5 hands. Each circle or node corresponds to
a state and is labeled with the gambler’s winnings for that state. The arrows represent potential
transitions between states and are labeled with their respective probabilities. This type of picture
is referred to as a state transition diagram.

Example. Consider a user whose is browsing the internet. We represent the internet as a graph
(G, E) with N vertices. Each vertice in the graph is a webpage and a directed edge from vertice
i to vertice j is a link from webpage i to webpage j. When a user is finished reading a webpage,
with probability d she picks a webpage uniformly at random from the enitre internet to go to next,
or with probability 1− d she picks a page uniformly at random out of the pages that the current
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page she is reading links to. The probability that a user transitions from webpage i to webpage j
can be written as

Pij = d · 1
N

+ (1− d) ·
Aij

∑N
j=1 Aij

,

where 0/0 = 0 and Aij = 1 if webpage i links to webpage j. The process keeping track of the
order in which the user visits webpages is a discrete time Markov chain with transition matrix P.
This model served as the basis for Google’s original pagerank algorithm. The following is an early
graph of the internet on June 29th, 1999 created by the Internet Mapping Project.

Example. Suppose that the weather today depends on the weather for the past two days. If it
rained for the past two days, then the probability it will rain today is 0.9. If it rained yesterday but
not the day before, then the probability of rain today is 0.7. If it did not rain yesterday but rained
two days ago, then the probability of rain today is 0.5. Finally, if it did not rain for the past two
days, then the probability of rain today is 0.4.

The process X = {Xn, n ≥ 1}, where Xn is either 1 or 0, depending on whether it rained on day n or
not, respectively, is not a Markov chain since the probability of rain depends on what happened
for the past two days. However, if we enlarge the state space and define states 1 through 4 by
setting

state 1 = rain for the past two days,
state 2 = rain yesterday, but no rain two days ago,
state 3 = no rain yesterday, but rain two days ago,
state 4 = no rain for the past two days,

and let X keep track of the weather for the past two days according to states 1 through 4 above,
then it is straightforward to verify that X is a Markov chain with one-step transition matrix

P =


0.9 0 0.1 0
0.7 0 0.3 0
0 0.5 0 0.5
0 0.4 0 0.6

 .

A state transition diagram for this example is given below.

53 Calculating Transition Probabilities

One quantity of interest when studying discrete Markov chains is the probability that the chain
will move from one state to the next. The one-step transition matrix provides the probability that
the chain will move from state i to state j is 1 step. Next, consider the probability that the chain
will move from state i to state j in 2 steps. In this case, we can condition on the first step that the
chain takes to write
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P(X2 = j|X0 = i) = ∑
k∈S

P(X2 = j, X1 = k|X0 = i)

= ∑
k∈S

P(X2 = j|X1 = k, X0 = i)P(X1 = k|X0 = i)

= ∑
k∈S

PikPkj.

In matrix form the above identity states that the 2-step transition matrix is given by P2. In general,
for a discrete time Markov chain the n-step transition matrix is given by the 1-step transition matrix
P raised to the power n, that is Pn.

Example. Suppose that Peter in the example above is happy today. Calculate the probability that
Peter is unhappy 3 days from now. In order to calculate the probability that Peter is unhappy 3
days from we first calculate the 3-step transition marix P3. This can be carried out in R as follows.

0.356 0.378 0.266
0.336 0.370 0.294
0.322 0.364 0.314

The probability that Peter is unhappy 2 days from now given that he is happy today is provided
by the (1, 2)nd entry of the 3-step transition matrix, which in this case is equal to 0.378.

Example. Consider the gambler in the second example above. Determine the distribution of
gambler’s winnings after playing 50 hands of blackjack. Assume that the gambler starts out with
$8 and stops upon reaching either $0 or $35, and that the probability of winning each hand is 60%.

Assuming that the gambler starts out with $8, the distribution of the gambler’s winnings after
50 hands is given by the 8th row the 50-step transition matrix. This may be found by raising the
1-step transition matrix to the 50th power. The following R code performs this computation and
graphs the distribution as a bar chart. Notice the relatively high probabilities of the gambler being
either going bankrupt or reaching the upper limit of $35. This is because once these states are
reached the gambler never leaves them. Such states are referred to as absorbing states.

Example. Consider the weather example above. Assuming that it rained for the past 2 days, calcu-
late the probability that it will be sunny 4 days from today. In order to determine this probability
we need to be mindful of the state space description for this example. If it rained for the past 2
days, the current state is state 1. Now consider the event that it is sunny 4 days from now. This
implies that 5 days from now the weather is either in state 3 or 4. The desired probability is therefore
the probability of transitioning from state 1 to either state 3 or 4. The 5-step transition matrix for
this problem can be calculated in R as follows.

0.71439 0.08515 0.09671 0.10375
0.67697 0.09945 0.09833 0.12525
0.59605 0.13220 0.09945 0.17230
0.58100 0.13784 0.10020 0.18096

The probability that it will be sunny 4 days from today is provided by the sum of the (1, 3)rd and
(1, 4)th entries of the 5-step transition matrix, which in this case is equal to 0.20046.
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54 Simulating Markov Chains

So far the examples we have encountered have not required us to simulate a Markov chain. In-
stead we were able to compute the desired probabilities by raising the 1-step transition matrix to
a certain power. However for calculating expectations related to a Markov chain simulation can
be a useful tool.

Example. Consider the gambler in the example above. Suppose that we would like to calculate
the average number of hands played before either going bankrupt or reaching the upper limit of
$35. This quantity can be approximated from the transition matrix but it is illustrative to see how
simulation can be used too.

In the R code below we simulate 10,000 replications of the gambler’s winnings over the course of
400 hands assuming that the gambler starts out with $8. Notice that in most cases the gambler
has finished playing by 400 hands but there are a few scenarios in which he has not either gone
bankrupt or reached the upper limit by then.

Now for each scenario we find the time at which the gambler finished playing and then plot the
results as a histogram.

It turns out that the general formula for the average time until the gambler finishes playing is
messy but if p 6= 1/2 can written as

c
1− 2p

− N
1− 2p

·

(
1−p

p

)c
− 1(

1−p
p

)N
− 1

.

If p = 1/2 it is simpler and given by c(N− c). In this case since p = 0.6 we use the formula above
and obtain a value of approximately 128.2. The average of the value returned by the Monte Carlo
simulation is given above. The result obtained by simulation is biased downwards slighlty since
a small percent of the sample paths do not terminate by 400 hands.

Example. Consider the internet example above assume that the internet is modeled by a 100 ver-
tice graph randomly generated according to the Barabasi-Albert preferential attachment model.
In this model the graph is “grown” one vertice at a time and new nodes “prefer” to connect to
existing nodes that have a larger number of incoming edges.

Now suppose that an internet user browses the graph above for several hours according to pager-
ank algorithm given above. One quantity of interest is the number of times that each page is
visited. This metric can serve as an estimate of how much traffic each page receives. The follow-
ing R code simulates 500 scenarios of a user browing 1,000 pages in succession assuming that the
initial page is uniformly distributed across the graph. The parameter d is set equal to 0.05 which
implies that the user on average visits 20 pages linked together before returning to a search engine
and randomly selecting a new page.

55 Classification of States

One question which is often asked above a Markov chain is whether every state is reachable from
every other state? The answer to this question can be found by looking at the state transition
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diagram for the chain. If there is a path from every state in the state space to every other state in
the state space then we say that the Markov chain is irreducible. Irreducible Markov chains possess
many nice properties as we will see.

Because not all Markov chains are irreducible we also need some terminology to describe this
situation. If on the state transition diagram there exists a path from a state A to a state B, then we
say that B is accessible from A. If it turns out that A is also accessible from B, then we say that A
and B communicate with each other. An irreducible Markov chain turns out just to be a chain in
which all states communicate with one another.

Example. Consider the example of Peter and his moods. From the 1-step transition diagram it is
clear that every states is accessible from every other state in only 1 step. Hence, the Markov chain
is irreducible in this case.

Example. Consider the gambler example above. In this case if the gambler begins with $c where
0 < c < N − 1, then he will either end up with $0 or $N but along the way he can visit every
state in between. Thus, every state is accessible from state i for 0 < i < N. On the other hand,
once the gambler enters states 0 or N, then the gambler remains there forever and so states 0 and
N only communicate with themselves. Because of this the Markov chain in this example is not
irreducible.

Example. Consider the internet example above. It may not always be the case that every webpage
is accessible from every other webpage simply by following a series of links from one page to
the next. If this were the case we would say that the graph of the internet is strongly connected.
However, recall that after visiting each page the user with probability d selects a page uniformly
at random to go to next. This means that even if the underlying graph is not strongly connected,
the Markov chain is still irreducible, so long as d > 0.

Example. Consider the weather example above. By viewing the outside in the state transition
diagram, it can be seen the Markov chain is irreducible.

56 Steady State Distributions

Consider again the example above of the Markov chain for Peter’s moods and suppose that we
ask ourselves the following question. If Peter is happy today, what is the probability that he is
unhappy 5 days now? How about 10 days from now? 20 days from now? Because people’s
moods change from day to day, it is reasonable to assume that the fact that Peter is happy today
bears little relationship to whether he will be unhappy 5 days from now. And maybe even less
so for 10 or 20 days from now. We can attempt to verify this claim by directly calculating the
probability that Peter is unhappy 5, 10 and 20 days from now given that he is happy today. The
results are as follows.

0.34072 0.37180 0.28748
0.33840 0.37084 0.29076
0.33676 0.37016 0.29308

0.3387190 0.3709716 0.2903094
0.3387082 0.3709671 0.2903246
0.3387006 0.3709640 0.2903354
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0.3387097 0.3709677 0.2903226
0.3387097 0.3709677 0.2903226
0.3387097 0.3709677 0.2903226

Recall that in the Markov chain for Peter’s moods state 1 corresponds to being happy and state 3
to being unhappy. From the calculations above we see that the probability that Peter is unhappy
5, 10 and 20 days from now given that he is happy today are 0.28748, 0.2903094 and 0.2903226.
The numbers are all very close to one another and seem to be converging to a value of 0.2903 up
to 4 significant digits. Moreover, notice that another interesting thing is happening. Regardless of
Peter’s mood was today, he has the same probability of being unhappy 10 days from now, namely
0.2903226. He also has the same probabilities of being unhappy and so-so, namely 0.3387097 and
0.3709677, respectively. These 3 probabilities together form an example of a steady state distribution
for the Markov chain.

A Markov chain may have a unique steady state distribution, multiple steady state distributions,
or no steady state distribution at all. If a Markov chain is ergodic it will always have a unique
steady state distribution. We will not go into the technical details of the definition of an ergodic
Markov chain but instead specify directly whether a chain is ergodic or not. When a unique steady
state distribution exists we denote it by π.

One way to compute an ergodic Markov chain’s steady state distribution is to raise its transition
matrix to a very high power and then look at the probabilities of being in each state. If the proba-
bilities do not vary by the initial state, then a steady state distribution has been found. A second
way to find the steady state distribution of an ergodic Markov chain is to solve the following
system of equations.

πj = ∑
i∈S

πiPij for each j ∈ S, (9)

∑
i∈S

πi = 1. (10)

Example. Consider the example above of Peter’s moods. In this case the Markov chain is ergodic
and the equations for its steady state distribution are as follows.

π1 = 0.5π1 + 0.3π2 + 0.2π3

π2 = 0.4π1 + 0.4π2 + 0.3π3

π3 = 0.1π1 + 0.3π2 + 0.5π3

together with

π1 + π2 + π3 = 1.

Notice that the above system consits of 4 equations but only 3 unknowns. It turns out that one of
the first 3 equations is redundant and can be eliminated. The final equation must always be kept.

1. 0.338709677419355 2. 0.370967741935484 3. 0.290322580645161
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Example. Consider next the gambler’s example. In this case the corresponding Markov chain is
not ergodic. This can be seen by raising its 1-step transition matrix to a high power and analyzing
the resulting structure.

Only the first and last columns of the 1, 000-step transition matrix are positive. The rest of the
columns are zero. This is because after 1,000 hands the gambler has either gone bankrupt or
reached his upper limit. Also, the probability of going bankrupt decreases as the gambler’s initial
cash increases. This is further evidence that a steady state distribution does not exist.

Example. The Markov chain corresponding to the page rank algorithm is ergodic so long as d > 0.
In this case, the system of equations characterizing the stationary distribution π is

πi =
d
|V| +

1− d
|V| · ∑

j∈M(i)

1
L(j)
· πj, for each i ∈ S, (11)

(12)

where |V| is the number of vertices in the graph G, and M(i) = {k : Aki = 1} is the set of pages
pointing to page i, and

L(j) =
|V|

∑
k=1

Ajk.

Also it is required that π1 + ... + π|V| = 1. One way to interpret πi is as the long-run fraction
of time that a user surfing the web will spend on page i. Because of this, pages with a higher
value of πi receive more traffic and in this context πi is referred to as the PageRank of page i. The
above equations for π imply that a page’s PageRank is equal to a constant plus a weighted sum of
the PageRank’s that point to that page i, where linking pages with less total links receive a large
weight.

In general it is difficult solve the system of equations and so two options are available. The first
is to attempt to raise the matrix P to a very high power which could be difficult is there are many
vertices in the graph. The second is to simulate a user browsing the web and then compute the
fraction of time they spend on each page. This was done in the internet example above and the
resulting bar chart provides an approximation to each page’s PageRank.

Example. Consider the weather example above. In this case the Markov chain describing the
weather for the past 2 days is ergodic and the steady state distribution is the solution to the system
of equations

π1 = 0.9π1 + 0.7π2

π2 = 0.5π3 + 0.4π4

π3 = 0.1π1 + 0.3π2

π4 = 0.5π3 + 0.6π4
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together with

π1 + π2 + π3 + π4 = 1.

Solving this system of equations in R one obtains the following.

1. 0.682926829268293 2. 0.0975609756097561 3. 0.0975609756097561 4. 0.121951219512195
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